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Abstract

This article describes a new numerical method, based on Stein’s
method and zero bias transformation, to compute CDO tranche prices.
We propose first order correction terms for both Gauss and Poisson
approximations and the approximation errors are discussed. We then
combine the two approximations to price CDOs tranches in the condi-
tionally independent framework using a realistic local correlation struc-
ture. Numerical tests show that the method provides robust results
with a very low computational burden.
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1 Introduction

In the growing credit derivatives market, correlation products like CDO play
a major role. On one hand, CDO enables financial institutions to transfer
efficiently the credit risk of a pool of names in a global way. On the other
hand, the investors can choose to invest on different tranches according to
their risk aversion.

The key term to value a CDO tranche is the law of the cumulative loss
of the underlying portfolio lt =

∑n
i=1

Ni
N (1−Ri)I{τi≤t}, where Ni, Ri, τi are

respectively the notional value, the recovery rate and the default time of
name i and N the total portfolio notional defined by N =

∑n
i=1Ni. The

critical issue for CDO pricing is to compute the value E[(lt − k)+], which is
a call function on the cumulative loss.

The standard market model for the default correlation is the factor model
([1],[14]), where the default events are supposed to be conditionally indepen-
dent given a common factor U . In the literature, there exist approximation
methods for the conditional distribution and then integrating (see [11], [18]).
In fact, conditional on U , the cumulative loss lt can be written as a sum of
independent random variables. Using the central limit theorem, it is then
natural to apply Gauss or Poisson approximation to compute the conditional
cumulative losses distribution.

The binomial-normal approximation has been studied in various financial
problems. It is well known that the price of an European option calculated
in the binomial tree model converges to its Black-Scholes price when the
discretization number tends towards infinity. In particular, Diener and Di-
ener [9] have proved that in this symmetric binomial case, the convergence
speed is of order O(1/n). In the credit analysis, Vasicek [24] has introduced
the normal approximation to a homogeneous portfolio of loans. As the de-
fault probabilities are in general small and not equal to 1/2, the convergence
speed is of order O(1/

√
n) in the general case.

Other numerical methods such as the saddle-point method ([16], [17], [2])
have been proposed. The saddle-point method consists in expanding around
the saddle point to approximate a function of the cumulant generating func-
tion of conditional losses. It coincides with the normal approximation when
choosing some particular point. In the inhomogeneous case, it is rather
costly to find the saddle-point numerically. In addition, although proven
efficient by empirical tests, there is no discussion of the error estimations in
aforementioned papers.

The Poisson approximation, less discussed in the financial context, is
known to be robust for small probabilities in the approximation of binomial
laws. One usually asserts that the normal approximation remains robust
when np ≥ 10. If np is small, the binomial law approaches a Poisson law.
In our case, the size of the portfolio is fixed for a standard synthetic CDO
tranche and n ≈ 125. On the other hand, the conditional default probability

2



p(U) varies in the interval (0, 1) according to its explicit form with respect
to the factor U . Hence we may encounter both cases and it is mandatory to
study the convergence speed since n is finite.

Stein’s method is an efficient tool to estimate the approximation errors in
the limit theorem problems. In this paper, we provide, by combining Stein’s
method and the zero bias transformation, first-order correction terms for
both Gauss and Poisson approximations. Error estimations of corrected ap-
proximations are obtained. These first order approximations can be applied
to conditional distributions in the general factor framework and the CDOs
tranches prices can then be obtained by integration across the common fac-
tors.

Thanks to the simple form of the formulas, we reduce largely the com-
putational burden for CDOs prices. In addition, the summand variables are
not required to be identically distributed, which corresponds to inhomoge-
neous CDO tranches. We present in Section 2 the theoretical results and
Section 3 and 4 are devoted to numerical tests on CDOs. Section 5 contains
the conclusion and perspective remarks. We gather at last some technical
results and proofs in Appendix.

2 First-Order Correction of Conditional Losses

2.1 First-order Gaussian correction

In the classical binomial-normal approximation, the expectation of functions
of conditional losses can be calculated using a Gaussian expectation. More
precisely, the expectation E[h(W )] where W is the sum of conditionally in-
dependent individual loss variables can be approximated by ΦσW (h) defined
by

ΦσW (h) =
1√

2πσW

∫ ∞
−∞

h(u) exp
(
− u2

2σ2
W

)
du (1)

where σW is the standard deviation of W . The error of this zero-order ap-
proximation is of order O(1/

√
n) by the well-known Berry-Esseen inequality

using the Wasserstein distance ([19], [8]) except in the symmetric case.
We shall improve the approximation quality by finding a correction term

such that the corrected error is of order O(1/n) even in the asymmetric
case. Some regularity conditions are required on the considered function h.
Notably, the call function, not possessing second order derivative, is difficult
to analyze. In the following theorem, we give the corrector term for regular
enough functions. The explicit error bound and the proof can be found in
Appendix 6.2.1.

Theorem 2.1 Let X1, . . . , Xn be independent mean zero random variables
(r.v.) such that E[X4

i ] (i = 1, . . . , n) exists. Let W = X1 + · · · + Xn
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and σ2
W = Var[W ]. For any function h such that ‖h′′‖ exists, the normal

approximation ΦσW (h) of E[h(W )] has corrector

Ch =
µ(3)

2σ4
W

ΦσW

(( x2

3σ2
W

− 1
)
xh(x)

)
(2)

where µ(3) =
∑n

i=1 E[X3
i ]. The corrected approximation error is bounded by∣∣∣E[h(W )]− ΦσW (h)− Ch

∣∣∣ ≤ α(h,X1, . . . , Xn

)
where α

(
h,X1, . . . , Xn

)
, precised later in (22), depends on h′′ and on the

moments of Xi up to the fourth order.

The corrector is written as the product of two terms: the first one de-
pends on the moments of Xi up to the third order and the second one is a
normal expectation of some polynomial function multiplying h. Both terms
are simple to calculate, even in the inhomogeneous case.

To adapt to the definition of the zero bias transformation, which will be
introduced in Section 6.1.1, and also to obtain a simple representation of the
corrector, the variables Xi’s are set to be of zero expectation in Theorem 2.1.
This condition requires a normalization step when applying the theorem to
conditional losses. A useful example concerns the centered Bernoulli random
variables which take two real values and have zero expectation.

Note that the moments of Xi play an important role here. In the sym-
metric case we have µ(3) = 0 and as a consequence Ch = 0 for any function
h. Therefore, Ch can be viewed as an asymmetric corrector in the sense
that, after correction, the approximation realizes the same error order as in
the symmetric case.

To specify the convergence order of the corrector, let us consider the
normalization of an homogeneous case where Xi are i.i.d. random variables
whose moments may depend on n. Notice that

ΦσW

(( x2

3σ2
W

− 1
)
xh(x)

)
= σWΦ1

((x2

3
− 1
)
xh(σWx)

)
.

To ensure that the above expectation term is of constant order, we often
suppose that the variance of W is finite and does not depend on n. In
this case, we have µ(3) ∼ O(1/

√
n) and the corrector Ch is also of order

O(1/
√
n). Consider now the percentage default indicator variable I{τi≤t}/n,

whose conditional variance given the common factor is equal to p(1− p)/n2

where p is the conditional default probability of the ith credit, identical for
all in the homogeneous case and depends on the common factor. Hence, we
shall fix p to be zero order and let Xi = (I{τi≤t} − p)/

√
n. Then σW is of

constant order as stated above. Finally, for the percentage conditional loss,
the corrector is of order O(1/n) because of the remaining coefficient 1/

√
n.
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The Xi’s are not required to have the same distribution: we can handle
easily different recovery rates (as long as they are independent r.v.) by com-
puting the moments of the product variables (1−Ri)I{τi≤t}. The corrector
depends only on the moments of Ri up to the third order. Note however that
the dispersion of the recovery rates alongside the dispersion of the notional
values can have an impact on the order of the corrector.

We now concentrate on the call function h(x) = (x − k)+. The Gauss
approximation corrector is given in this case by

Ch =
µ(3)

6σ2
W

kφσW (k) (3)

where φσ is the density function of the distribution N(0, σ2). When the
strike k = 0, the corrector Ch = 0. On the other hand, the function k exp

(
−

k2

2σ2
W

)
reaches its maximum and minimum values when k = σW and k = −σW

respectively, and then tends to zero quickly.
The numerical computation of this corrector is extremely simple since

there is no need to take expectation. Observe however that the call func-
tion is a Lipschitz function with h′(x) = I{x>k} and h′′ exists only in the
distribution sense. Therefore, we can not apply directly Theorem 2.1 and
the error estimation deserves a more subtle analysis. The main tool we used
to establish the error estimation for the call function is a concentration in-
equality of Chen and Shao [7]. For detailed proof, interested reader may
refer to El Karoui and Jiao [10].

We shall point out that the regularity of the function h is essential in
the above result. For more regular functions, we can establish correction
terms of corresponding order. However, for the call function, the second
order correction can not bring further improvement to the approximation
results in general.

2.2 First-order Poisson correction

Following the same idea, if V is a random variable taking non-negative
integers, then we may approximate E[h(V )] by a Poisson function

PλV
(h) =

n∑
l=0

λlV
l!
e−λV h(l).

The Poisson approximation is robust under some conditions, for example,
when V ∼ B(n, p) and np < 10. We shall improve the Poisson approxi-
mation by presenting a corrector term as above. We remark that due to
the property that a Poisson distributed random variable takes non-negative
integer values, the variables Yi’s in Theorem 2.2 are discrete integer random
variables. Similar as in the Gaussian case, the proof of the following theorem
is postponed to Appendix 6.2.2.

5



Theorem 2.2 Let Y1, . . . , Yn be independent random variables taking non-
negative integer values such that E[Y 3

i ] (i = 1, . . . , n) exist. Let V =
Y1 + · · · + Yn with expectation and variance λV = E[V ] and σ2

V = Var[V ].
Then, for any bounded function h defined on N+, the Poisson approximation
PλV

(h) of E[h(V )] has corrector

CPh =
σ2
V − λV

2
PλV

(∆2h) (4)

where Pλ(h) = E[h(Λ)] with Λ ∼ P(λ) and ∆h(x) = h(x + 1) − h(x). The
corrected approximation error is bounded by∣∣E[h(V )]− PλV

(h)− CPh
∣∣ ≤ β(h, Y1, . . . , Yn)

where β(h, Y1, . . . , Yn), precised later in (30), depends on h and on the mo-
ments of Yi up to the third order.

The Poisson corrector CPh is of similar form with the Gaussian one and
contains two terms as well: one term depends on the moments of Yi and the
other is a Poisson expectation.

Since Yi’s are N+-valued random variables, they can represent directly
the default indicators I{τi≤t}. This fact limits however the recovery rates to
be identical or proportional for all credits. We now consider the order of the
corrector. Suppose that λV does not depend on n to ensure that PλV

(∆2h)
is of constant order. Then in the homogeneous case, the conditional default
probability p ∼ O(1/n). For the percentage conditional losses, as in the
Gaussian case, the corrector is of order O(1/n) with the coefficient 1/n.

Consider the call function h(x) = (x− k)+ where k is a positive integer.
Since ∆2h(x) = I{x=k−1}, its Poisson approximation corrector is given by

CPh =
σ2
V − λV

2(k − 1)!
e−λV λk−1

V . (5)

The corrector vanishes when the expectation and the variance of the sum
variable V are equal. The difficulty here is that the call function is not
bounded. However, we can prove that Theorem 2.2 holds for any function
of linear increasing speed (see [10]).

2.3 Other approximation methods

There exist other approximation methods, notably the Gram-Charlier ex-
pansions and the saddle-point method, to calculate the portfolio products
prices. Both methods can be applied to conditional losses. We use the
notations as in Section 2.1.

The Gram-Charlier expansion has been used to approximate the bond
prices [22] through expansion of the density function of a given random vari-
able by using the Gaussian density and cumulants. We shall note that in the
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expectation term (2), the polynomial function multiplied by h corresponds
to the first order Gram-Charlier expansion. However, the higher order terms
obtained by our method are different. For comparison of Gram-Charlier and
other expansions (Edgeworth expansion for example), one can consult [22].

The saddle-point method consists of writing the considered expectation
function as an integral which contains the cumulant generating function
K(ξ) = ln E[exp(ξW )]. For example,

E[(W − k)+] = lim
A→+∞

1
2πi

∫ c+iA

c−iA

exp(K(ξ)− ξk)
ξ2

dξ (6)

where c is a real number. In general, the expansion of the integrand function
is made around its critical point — the saddle point, where the integrand
function decreases rapidly and hence is most dense. By choosing some par-
ticular point to make the expansion, the saddle point method may coincide
with the classical Gauss approximation. In [2], the saddle point is chosen
such that K′(ξ0) = k and the authors propose to approximate E[(W − k)+]
by expansion formulas of increasing precision orders.

It is important to note that in the saddle-point method, the first step is
to obtain the value of the saddle point ξ0, which is equivalent to find the
solution of the equation K′(ξ) = k. In the homogeneous case where Xi’s are
i.i.d. random variables given by Xi = γ(I{τi≤t}−p) with γ = 1/

√
np(1− p),

we have the explicit solution

ξ0 =
√
np(1− p) ln

(√np(1− p) + k(1− p)√
np(1− p)− kp

)
.

However, in the inhomogeneous case, it consists in solving the equation
numerically, which can be rather tedious. In addition, although empirically
proved to be efficient, there is no discussions on convergence speed for the
above two methods.

3 Numerical Tests on Conditional Losses

Before going further on applications to the CDOs pricing, we would like in
this section to perform some basic testings of the preceding formulas. In
the sequel, we consider the call value E[(l − k)+] where l = n−1

∑n
i=1(1 −

Ri)ξi and the ξi’s are independent Bernoulli random variable with success
probability equal to pi.

3.1 Validity Domain of the Approximations

We begin by testing the accuracy of the corrected Gauss and Poisson ap-
proximations for different values of np =

∑n
i=1 pi in the case Ri = 0, n = 100

and for different values of k. The benchmark value is obtained through the
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Figure 1: Gauss and Poisson approximation errors for various values of np
as a function of the strike over the expected loss.

recursive methodology well known by the practitioners ([15], [5]) which com-
putes the loss distribution by reducing the portfolio size by one name at each
recursive step.

In Figure 1 we plot the differences between the corrected Gauss ap-
proximation and the benchmark (Error Gauss) and the corrected Poisson
approximation and the benchmark (Error Poisson) for different values of
np as a function of the call strike over the expected loss. Note that when
the tranche strike equals the expected loss, the normalized strike value in
the Gaussian case equals zero due to the centered random variables, which
means that the correction vanishes. We also observe that the Gaussian error
is maximal around this point.

We observe on these graphs that the Poisson approximation outperforms
the gaussian one for approximately np < 15. On the contrary, for large value
of np, the Gauss approximation is the best one. Because of the correction,
the threshold between the Gauss-Poisson approximation is higher than the
classical one np ≈ 10. In addition, the threshold may be chosen rather
flexibly around 15. Combining the two approximations, the minimal error

8



of the two approximations is relatively larger in the overlapping area when
np is around 15. However, we obtain satisfactory results even in this case.
In all the graphs presented, the error of the mixed approximation is inferior
than 1 bp.

Our tests are made with inhomogeneous pi’s obtained as

pi = p exp(σWi − 0.5σ2)

(log-normal random variable with expectation p and volatility σ) where Wi

is a family of independent standard normal random variables and values of
σ ranging from 0% to 100%. Qualitatively, the results were not affected by
the heterogeneity of the pi’s.

Observe that there is oscillation in the Gauss approximation error, while
the Poisson error is relatively smooth. This phenomenon is related to the
discretisation impact of discrete distributions.

As far as a unitary computation is concerned (one call price), the Gauss
and Poisson approximation perform much better than the recursive method-
ology: we estimate that these methodologies are 200 times faster. To be fair
with the recursive methodology one has to recall that by using it we obtain
not only a given call price but the whole loss distribution with which we can
obtain several strikes values at the same time. In that case, our approxima-
tions outperform the recursive methodology by a factor ≥ 30 with six strike
values (3%, 6%, 9%, 12%, 15%, 22%).

3.2 Saddle-point method and Gauss approximation

We now compare numerically the saddle-point method in [2] and the Gauss
approximation for different values of np. In Figure 2 are presented the errors
of the first order Gauss approximation, and of the first and the second saddle
point approximations, as a function of the call strike over the expected loss.
The errors of the second order saddle-point method are comparable with
the Gauss approximation in all tests. Note that the saddle-point method
has also been discussed for non-normal distributions (see [25]) and deserves
further studies for CDOs computations.

The tests are applied to the homogeneous case for constant values of p
and the calculation times for the saddle point method have outperformed
the first order Gauss approximation. However this is no longer true in the
inhomogeneous case.

3.3 Stochastic Recovery Rate - Gaussian case

We then consider the case of stochastic recovery rate and check the validity
of the Gauss approximation in this case. Following the standard in the
industry (Moody’s assumption), we will model the Ri’s as independent beta
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Figure 2: Gauss and Saddle-point methods approximation errors for various
values of np as a function of the strike over the expected loss.
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random variables with expectation 50% and standard deviation 26%. In
addition, Ri is independent of ξi.

An application of Theorem 2.1 is used so that the first order corrector
term takes into account the first three moments of the random variables Ri.
To describe the obtained result, let us first introduce some notation. Let
µRi , σ

2
Ri

and γ3
Ri

be the first three centered moments of the random variable
Ri, namely

µRi = ERi, σ2
Ri

= E(Ri − µRi)
2, γ3

Ri
= E(Ri − µRi)

3.

We also define Xi = n−1(1 − Ri)ξi − µi where µi = n−1(1 − µRi)pi and
pi = Eξi. Let W be

∑n
i=1Xi. We have

σ2
W := Var(W ) =

n∑
i=1

σ2
Xi

where σ2
Xi

=
pi
n2

[
σ2
Ri

+ (1− pi)(1− µRi)
2
]
.

Finally, if k̃ = k −
∑n

i=1 µi, we have the following approximation

E(l − k̃)+ ' ΦσW ( · − k)+ +
1
6

1
σ2
W

n∑
i=1

E
[
X3
i ]k̃φσW (k̃)

where

E
[
X3
i

]
=
pi
n3

[
(1− µRi)

3(1− pi)(1− 2pi) + 3(1− pi)(1− µRi)σ
2
Ri
− γ3

Ri

]
.

The benchmark is obtained using standard Monte Carlo integration with
106 simulations. In Figure 3, we display the difference between the approx-
imated call price and the benchmark as a function of the strike normalized
by the expected loss. We also consider the lower and upper 95% confidence
interval for the Monte Carlo results. As in the standard case, one observes
that the greater the value of np the better the approximation. Furthermore,
the stochastic recovery brings a smoothing effect as the conditional loss no
longer follows a binomial law.

The Poisson approximation, due to constraint of integer valued random
variables, can not be used directly in the stochastic recovery rates case. We
try however to take the mean value of Ri’s as the uniform recovery rate
without improving the results except for very low strike (equal to a few bp).

4 Application to CDOs portfolios

In this section, we want to test on real life examples the approaches devel-
oped in the preceding sections. We will work in the conditionally indepen-
dent framework. In other words, we will assume that conditionally on a
risk factor U the default indicators of the names in the considered pool are
independent.
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Figure 3: Gauss approximation error in the stochastic recovery case for
various values of np as a function of the strike. Comparison with Monte
Carlo 1,000,000 simulations. 95% confidence interval.
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Let us introduce the notation. We consider a portfolio of n issuers and
we will assume for the sake of simplicity that the weight of each firm in the
portfolio is the same is equal to 1/n and that the recovery rate for each of
these credits is constant and equal to a fixed value R fixed at 40%. The
percentage loss on the pool for a given time horizon t is defined as

lt =
1−R
n

n∑
i=1

I{τi≤t} .

The first step to value properly a CDO is to define the correlation between
the default events.

4.1 Modelling the Correlation

Practically, one defines a correlation structure using the conditionally inde-
pendent framework. In a nutshell, this tantamounts to postulate the exis-
tence of a random variable U (that we may assume uniformly distributed on
(0, 1) without loss of generality) such that, conditionally on U , the events
Ei = {τi ≤ t} are independent. To completely specify a correlation model,
one has to choose a function F such that∫ 1

0
F (p, u)du = p, 0 ≤ F ≤ 1.

If pi = P[Ei], one simply interprets F (pi, u) as P[Ei|U = u].
The standard Gaussian copula case with correlation ρ corresponds to the

function F defined by

F (p, u) = N
(
N−1(p)−√ρN−1(u)

√
1− ρ

)
where N (x) is the distribution function of N(0, 1). The main drawback of
the Gaussian correlation approach is the fact that one cannot find a unique
model parameter ρ to price all the observed market tranches on a given
basket. This phenomenon is referred to as correlation skew by the market
practitioners.

In our tests, we will apply a more general approach ([23], [4]) in which
the function F is defined in a non parametric way in order to retrieve the
observed market prices of tranches. This function has been calibrated on
market prices of the five year tranches 0%-3%, 3%-6%, 6%-9%, 9%-12%,
12%-15% and 15%-22% on a bespoke basket whose prices are observed on a
monthly basis.

4.2 CDOs Payoff

Let us describe the payoff of a CDO. Let a and b be the attachment and
detachment point expressed in percentage and let

la,bt = (lt − a)+ − (lt − b)+
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be the loss on the tranche [a, b]. The outstanding notional on the tranche is
defined as

ca,bt = 1− la,bt
b− a

whereas the tranche survival probability is given by q(a, b, t) = E[ca,bt ] com-
puted under any risk-neutral probability.

The value of the default leg and the premium leg of a continuously com-
pounded CDO of maturity T are given respectively by the following formu-
las:

Default Leg = −(b− a)
∫ T

0
B(0, t)q(a, b,dt),

Premium Leg = Spread× (b− a)
∫ T

0
B(0, t)q(a, b, t)dt

where B(0, t) is the value at time 0 of a zero coupon maturing at time t.
We here assume that the interest rates are deterministic. Thanks to the
integration by part formula, the fair spread is then computed as follow

Fair Spread =
1−B(0, T )q(a, b, T ) +

∫ T

0
q(a, b, t)B(0, dt)∫ T

0
B(0, t)q(a, b, t)dt

. (7)

To compute the value of the preceding integrals, we begin by approxi-
mating the logarithm of the functions q and B by linear splines with monthly
pillars for q (adding the one week point for short term precision) and weekly
pillars for B. The integrals are then computed using time step of length one
week. Performing these operations boils down to compute call prices value
of the form C(t, k) = E[(lt − k)+].

4.3 Gauss Approximation

We describe in this subsection the Gauss approximation that can be used to
compute in an efficient way the call prices in any conditionally independent
model.

Let µi and σi be respectively the expectation and standard deviation
of the random variable χi = n−1(1 − R)I{τi≤t}. Let Xi = χi − µi and
W =

∑n
i=1Xi, so that the expectation and standard deviation of the random

variable W are 0 and σW :=
√∑n

i=1 σ
2
i respectively. Let also pi be the

default probability of issuer i. We want to calculate

C(t, k) = E[(lt − k)+] = E[(W − k̃)+]

14



where k̃ = k −
∑n

i=1 µi. Remark that pi and k are in fact all functions of
the common factor.

Assuming that the random variable Xi’s are mutually independent, the
result of Theorem 2.1 may be stated in the following way

C(t, k) '
∫ +∞

−∞
dxφσW (x)(x− k̃)+ +

1
6

1
σ2
W

n∑
i=1

E[X3
i ]k̃φσW (k̃) (8)

where E[X3
i ] = (1−R)3

n3 pi(1 − pi)(1 − 2pi). The first term on the right-hand
side of (8) is the Gauss approximation that can be computed in closed form
thanks to Bachelier formula whereas the second term is a correction term
that account for the non-normality of the loss distribution.

In the sequel, we will compute the value of the call option on a loss distri-
bution by making use of the approximation formula (8). In the conditionally
independent case, one can indeed write

E[(lt − k)+] =
∫

PU (du)E[(lt − k)+|U = u]

where U is the latent variable describing the general state of the economy.
As the default time are conditionally independent upon the variable U , the
integrand may be computed in closed form using (8).

4.4 Poisson Approximation

We describe in this subsection the poisson approximation that can also be
used to compute in an efficient way the call prices in the conditionally inde-
pendent model.

Recall that Pλ is the Poisson measure of intensity λ. Let λi = pi and
λV =

∑n
i=1 λi where now V =

∑n
i=1 Yi with Yi = I{τi≤t}. We want to

calculate

C(t, k) = E[(lt − k)+] = E[(n−1(1−R)V − k)+].

Recall that the operator ∆ is such that (∆f)(x) = f(x+ 1)− f(x). We also
let the function h be defined by h(x) = (n−1(1−R)x− k)+ .

Assuming that the random variables Yi’s are mutually independent, we
may write according to the results of Theorem 2.2 that

C(t, k) ' PλV
(h)− 1

2

( n∑
i=1

λ2
i

)
PλV

(∆2h) (9)

where

PλV
(∆2h) = n−1(1−R)e−λV

λm−1
V

(m− 1)!
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andm = kn/(1−R) is suppose to beinteger. Recall that here k represents the
percentage attachment or detachment points. The formula (9) may be used
to compute the conditional call price in the same way as in the preceding
subsection. The true prices can be then obtained by taking integration with
respect to the common factor.

4.5 Real Life CDO Pricing

In this subsection, we finally use both first order approximations to compute
CDO leg values and break even as described in formula (7). As this formula
involves conditioning on the latent variable U , we are either in the validity
domain of the Poisson approximation or in the validity domain of the Gauss
approximation. Taking into account the empirical facts underlined in Sec-
tion 3, we choose to apply the Gauss approximation for the call value as
soon as

∑
i F (pi, u) > 15 and the Poisson approximation otherwise. All the

subsequent results are benchmarked using the recursive methodology.
Our results for the quoted tranches are gathered in the following table.

Level represents the premium leg for a spread of 1 bp and break even is the
spread of CDO as described in (7).

Attach Detach Output REC Approx.

0% 3% Default Leg 2.1744% 2.1752%
Level 323.2118% 323.2634%

Break Even 22.4251% 22.4295%
3% 6% Default Leg 0.6069% 0.6084%

Level 443.7654% 443.7495%
Break Even 4.5586% 4.5702%

6% 9% Default Leg 0.1405% 0.1404%
Level 459.3171% 459.3270%

Break Even 1.0197% 1.0189%
9% 12% Default Leg 0.0659% 0.0660%

Level 462.1545% 462.1613%
Break Even 0.4754% 0.4758%

12% 15% Default Leg 0.0405% 0.0403%
Level 463.3631% 463.3706%

Break Even 0.2910% 0.2902%
15% 22% Default Leg 0.0503% 0.0504%

Level 464.1557% 464.1606%
Break Even 0.1549% 0.1552%

0% 100% Default Leg 3.1388% 3.1410%
Level 456.3206% 456.3293%

Break Even 1.1464% 1.1472%

In the following table and Figure 4 are presented the error on the break
even expressed in bp. One should note that in all cases the error is less
than 1.15 bp way below the market bid-ask uncertainty that prevail on the
bespoke CDO business.
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Break Even Error
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Figure 4: Break even error for the quoted tranches expressed in bp.

Error

0-3 0.44
3-6 1.15
6-9 - 0.08

9-12 0.04
12-15 - 0.08
15-22 0.02
0-100 0.08

Trying to understand better these results, we display now in the following
tables and Figure 5 the same results but for equity tranches. We observe
on this graph that the error is maximum for the tranche 0%-6% which
correspond to our empirical finding (see Figure 1) that the approximation
error is maximum near the expected loss of the portfolio (equal here to
4.3%).
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Attach Detach Output REC Mixte

0% 3% Default Leg 2.1744% 2.1752%
Level 323.2118% 323.2634%

Break Even 22.4251% 22.4295%
0% 6% Default Leg 2.7813% 2.7836%

Level 383.4886% 383.5114%
Break Even 12.0878% 12.0969%

0% 9% Default Leg 2.9218% 2.9240%
Level 408.7648% 408.7853%

Break Even 7.9422% 7.9476%
0% 12% Default Leg 2.9877% 2.9900%

Level 422.1122% 422.1302%
Break Even 5.8984% 5.9025%

0% 15% Default Leg 3.0282% 3.0303%
Level 430.3624% 430.3788%

Break Even 4.6909% 4.6940%
0% 22% Default Leg 3.0785% 3.0807%

Level 441.1148% 441.1280%
Break Even 3.1723% 3.1744%

0% 100% Default Leg 3.1388% 3.1410%
Level 456.3206% 456.3293%

Break Even 1.1464% 1.1472%

Error

0-3 0.44
0-6 0.92
0-9 0.55

0-12 0.41
0-15 0.31
0-22 0.21

0-100 0.08

4.6 Sensitivity analysis

We are finally interested in calculating the sensitivity with respect to pj . As
for the Greek of the classical option theory, direct approximations using the
finite difference method implies large errors. We hence propose the following
procedure.

Let ljt = ωj(1−Rj)I{τj≤t}. Then for all j = 1, · · · , n,

(lt − k)+ = I{τj≤t}

(∑
i : i 6=j

lit + ωj(1−Rj)− k
)

+
+ I{τj>t}

(∑
i : i 6=j

lit − k
)

+
.

As a consequence, we may write

E[(lt − k)+|U ] = F (pj , U)E
[(∑

i : i 6=j
lit + ωj(1−Rj)− k

)
+

∣∣∣U]
+
(
1− F (pj , U)

)
E
[(∑

i : i 6=j
lit − k

)
+

∣∣∣U].
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Break Even Error on Equity Tranche
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Figure 5: Break even error for the equity tranches expressed in bp.

Since the only term which depends on pj is the function F (pj , U), we obtain

∂C(t, k)
∂pj

=
∫ 1

0
du∂1F (pj , u)E

[(∑
i : i 6=j

lit+ωj(1−Rj)−k
)

+
−
(∑
i : i 6=j

lit−k
)

+

∣∣∣U = u
]

(10)
where we compute the call spread using the mixed approximation for the
partial total loss.

We test this approach in the case where R = 0 on a portfolio of 100 names
such that one fifth of the names have a default probability of 25 bp, 50 bp,
75 bp, 100 bp and 200 bp respectively for an average default probability
of 90 bp. We compute the derivatives of call prices with respect to each
individual name probability according to the formula (10) and we benchmark
this result by the sensitivities given by the recursive methodology.

We find out that in all tested cases (strike ranging from 3% to 20%) the
relative error on these derivatives is less than 1% except for strike higher
than 15% for which the relative error is around 2%. Note however that in
this case the absolute error is less than 0.1 bp for derivatives whose value is
ranging from 2 bp to 20 bp. In Figure 6 we plot these derivatives for a strike
value of 3% computed using the recursive and approximated methodology.
We may remark that the approximated methodology always overvalue the
derivatives value. However in the case of a mezzanine tranche (call spread)
this effect will be offset. We consider these results as very satisfying.
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Call Value Derivative - Strike = 3%
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Figure 6: Derivatives with respect to individual name default probability
using the recursive and approximated methodology.

5 Conclusion

We propose in this paper a combination of first order Gauss and Poisson
approximations. Various numerical tests have been effectuated. Notably,
we have provided an empirical threshold for choosing between the two ap-
proximations. Comparisons between other numerical methods (saddle-point,
Monte Carlo and recursive) show that our method provides very satisfactory
results when computing prices and sensitivities for CDOs tranches . Fur-
thermore, it outperforms in terms of computation time thanks to explicit
formulas of correctors.

Further research work consists in some extensions where we hope to
treat random recovery rates when using the Poisson approximation. In the
framework of Stein’s method and zero bias transformation, this may involve
certain alternative distribution other than the Poisson one.

6 Appendix

Theorem 2.1 and Theorem 2.2 are obtained through Stein’s method and zero
bias transformation. We now present the theoretical framework and proofs
for both theorems.
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6.1 Zero bias transformation and Stein’s method

Stein’s method is an efficient tool to study the approximation problems.
In his pioneer paper, Stein [20] first proposed this method to study the
Gauss approximation in the central limit theorem. The method has been
extended to the Poisson case by Chen [6]. In this framework, the zero bias
transformation has been introduced by Goldstein and Reinert [12] for the
Gaussian distribution, which provides practical and concise notation for the
estimations.

Generally speaking, the zero bias transformation is characterized by some
functional relationship implied by the reference distributions, Gauss or Pois-
son, such that the “distance” between one distribution and the reference
distribution can be measured by the “distance” between the distribution
and its zero biased one.

6.1.1 The Gaussian case

In the Gaussian case, the zero bias transformation is motivated by the fol-
lowing observation of Stein: a random variable (r.v.) Z has the central
normal distribution N(0, σ2) if and only if E[Zf(Z)] = σ2E[f ′(Z)] for all
regular enough functions f . In a more general context, for any mean zero
r.v. X of variance σ2 > 0, a r.v. X∗ is said to have its zero biased distribu-
tion if the following relationship (11) holds for any function f such that the
expectation terms are well-defined

E[Xf(X)] = σ2E[f ′(X∗)]. (11)

The distribution of X∗ is unique with density function given by pX∗(x) =
σ−2E[XI{X>x}].

The central normal distribution is invariant by the zero bias transforma-
tion. In fact, X∗ and X have the same distribution if and only if X is a
normal variable of mean zero.

For any given function h, the error of the Gaussian approximation of
E[h(X)] can be estimated by combining the Stein’s equation

xf(x)− σ2f ′(x) = h(x)− Φσ(h), (12)

where Φσ(h) is given by (1). By (11) and (12), we have

E[h(X)]− Φσ(h) = E[Xfh(X)− σ2f ′h(X)]

= σ2E[f ′h(X∗)− f ′h(X)] ≤ σ2‖f ′′h‖E[|X∗ −X|].
(13)

where fh is the solution of (12). Here the property of the function fh and
the difference between X and X∗ are important for the estimations.
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The Stein’s equation can be solved explicitly. If h(t) exp(− t2

2σ2 ) is inte-
grable on R, then one solution of (12) is given by

fh(x) =
1

σ2φσ(x)

∫ ∞
x

(h(t)− Φσ(h))φσ(t)dt (14)

where φσ(x) is the density function of N(0, σ2). The function fh is one order
more differentiable than h. Stein has established that ‖f ′′h‖ ≤ 2‖h′‖/σ2 if h
is absolutely continuous.

For the term X − X∗, the estimations are easy when X and X∗ are
independent by using a symmetrical term Xs = X − X̃ where X̃ is an
independent duplicate of X:

E[|X∗ −X|k] =
1

2(k + 1)σ2
E
[
|Xs|k+2

]
, ∀k ∈ N+. (15)

For the sum of independent random variables, Goldstein and Reinert [12]
have introduced a construction of zero bias transformation using a random
index design to choose the weight of each summand variable.

Proposition 6.1 (Goldstein and Reinert) Let Xi (i = 1, . . . , n) be indepen-
dent zero-mean r.v. of finite variance σ2

i > 0 and X∗i having the Xi-zero nor-
mal biased distribution. We assume that (X̄, X̄∗) = (X1, . . . , Xn, X

∗
1 , . . . , X

∗
n)

are independent r.v. Let W = X1 + · · ·+Xn and denote its variance by σ2
W .

We also use the notation W (i) = W−Xi. Let us introduce a random index I
independent of (X̄, X̄∗) such that P(I = i) = σ2

i /σ
2
W . Then W ∗ = W (I)+X∗I

has the W -zero biased distribution.

Although W and W ∗ are dependent, the above construction based on a
random index choice enables us to obtain the estimation of W −W ∗:

E
[
|W ∗ −W |k

]
=

1
2(k + 1)σ2

W

n∑
i=1

E
[
|Xs

i |k+2
]
, ∀k ∈ N+. (16)

6.1.2 The Poisson case

The Poisson case is similar to the Gaussian one. Recall that Chen [6] has ob-
served that a non-negative integer-valued random variable Λ of expectation
λ follows the Poisson distribution if and only if E[Λg(Λ)] = λE[g(Λ + 1)] for
any bounded function g. Similarly as in the Gaussian case, let us consider
a random variable Y taking non-negative integer values and E[Y ] = λ <∞.
A r.v. Y ∗ is said to have the Y -zero Poisson biased distribution if for any
function g such that E[Y g(Y )] exists, we have

E[Y g(Y )] = λE[g(Y ∗ + 1)]. (17)
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The Stein’s Poisson equation is also introduced by Chen [6]:

yg(y)− λg(y + 1) = h(y)− Pλ(h) (18)

where Pλ(h) = E[h(Λ)] with Λ ∼ P (λ). Hence, we obtain the error of the
Poisson approximation

E[h(V )]−Pλ(h) = E
[
V gh(V )−λV gh(V +1)

]
= λV E

[
gh(V ∗+1)−gh(V +1)

]
(19)

where V is a non-negative integer-valued r.v. with expectation λV , the
function gh is the solution of (18) and is given by

gh(k) =
(k − 1)!
λk

∞∑
i=k

λi

i!
(
h(i)− Pλ(h)

)
. (20)

It is unique except at k = 0. However, the value g(0) does not enter into
our calculations afterwards.

We consider now the sum of independent random variables. Let Yi(i =
1, · · · , n) be independent non-negative integer-valued r.v. with positive ex-
pectations λi and Y ∗i having the Yi-Poisson zero biased distribution. Denote
by V = Y1 + · · ·+Yn and λV = E[V ]. Let I be a random index independent
of (Ȳ , Ȳ ∗) satisfying P (I = i) = λi/λV . Then V (I) + Y ∗I has the V -Poisson
zero biased distribution where V (i) = V − Yi.

For any integer l ≥ 1, assume that Y and Yi have to up (l + 1)-order
moments. Then

E[|Y ∗ − Y |l] =
1
λ

E
[
Y |Y s − 1|l

]
, E[|V ∗ − V |l] =

1
λV

n∑
i=1

E
[
Yi|Y s

i − 1|l
]
.

Finally, recall that Chen has established ‖∆gh‖ ≤ 6‖h‖min
(
λ−

1
2 , 1
)

with
which we obtain the following zero order estimation

|E[h(V )]− PλV
(h)| ≤ 6‖h‖min

( 1√
λV

, 1
) n∑
i=1

E
[
Yi|Y s

i − 1|
]
. (21)

There also exist other estimations of error bound (e.g. Barbour and Eagleson
[3]). However we are more interested in the order than the constant of the
error.

6.2 Proof of Theorem 2.1 and 2.2

We shall use in the sequel without comment the notation introduced in
Section 6.1.
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6.2.1 The normal case: Theorem 2.1

We now give the explicit form of the corrected approximation error and the
proof to establish it. With the notation of Theorem 2.1, the corrected error
bound α(h,X1, · · · , Xn) is given by∣∣∣E[h(W )]− ΦσW (h)− Ch

∣∣∣
≤
∥∥f (3)

h

∥∥ 1
12

n∑
i=1

E
[
|Xs

i |4
]

+
1

4σ2
W

∣∣∣ n∑
i=1

E[X3
i ]
∣∣∣ n∑
i=1

E
[
|Xs

i |3
]

+
1
σW

√√√√ n∑
i=1

σ6
i

 .

(22)

Note that the existence of f (3)
h requires that h is second order derivable.

Proof. By taking first order Taylor expansion, we obtain

E[h(W )]− ΦσW (h) = σ2
WE[f ′h(W ∗)− f ′h(W )]

= σ2
WE[f ′′h (W )(W ∗ −W )] + σ2

WE
[
f

(3)
h

(
ξW + (1− ξ)W ∗

)
ξ(W ∗ −W )2

]
(23)

where ξ is a random variable on [0, 1] independent of all Xi and X∗i . Firstly,
we notice that the remaining term is bounded by

E
[∣∣∣f (3)

h

(
ξW+(1−ξ)W ∗

)
ξ(W ∗−W )2

∣∣∣] ≤ ∥∥f (3)
h

∥∥
2

E[(W ∗−W )2] ≤
∥∥f (3)

h

∥∥
12σ2

W

n∑
i=1

E
[
|Xs

i |4
]
.

(24)
Secondly, we consider the first term of equation (23). Since X∗I is inde-

pendent of W , we have

E[f ′′h (W )(W ∗−W )] = E[f ′′h (W )(X∗I −XI)] = E[X∗I ]E[f ′′h (W )]−E[f ′′h (W )XI ].
(25)

For the first term E[X∗I ]E[f ′′h (W )] of (25), we write it as the sum of two
parts

E[X∗I ]E[f ′′h (W )] = E[X∗I ]ΦσW (f ′′h ) + E[X∗I ]E[f ′′h (W )− ΦσW (f ′′h )].

The first term E[X∗I ]ΦσW (f ′′h ) of the right-hand side is the candidate of the
corrector. For the second term, we apply the zero order estimation and get

∣∣∣E[X∗I ]
(
E[f ′′h (W )]− ΦσW (f ′′h )

)∣∣∣ ≤ ∥∥f (3)
h

∥∥
4σ4

W

∣∣∣ n∑
i=1

E[X3
i ]
∣∣∣ n∑
i=1

E
[
|Xs

i |3
]
. (26)

For the second term E[f ′′h (W )XI ] of (25), we use a technique of condi-
tional expectation by observing that E[f ′′h (W )XI ] = E

[
f ′′h (W )E[XI |X̄, X̄∗]

]
.
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Then by the Cauchy-Schwartz inequality,

∣∣∣E[f ′′h (W )XI ]
∣∣∣ =

∣∣∣cov
[
f ′′h (W ),E[XI |X̄, X̄∗]

]∣∣∣ ≤ 1
σ2
W

√
Var[f ′′h (W )]

√√√√ n∑
i=1

σ6
i .

Notice that Var[f ′′h (W )] = Var[f ′′h (W ) − f ′′h (0)] ≤ E[(f ′′h (W ) − f ′′h (0))2] ≤
‖f (3)
h ‖

2σ2
W . So ∣∣∣E[f ′′h (W )XI ]

∣∣∣ ≤ ‖f (3)
h ‖
σW

√√√√ n∑
i=1

σ6
i . (27)

Finally, it suffices to write

E[h(w)]− ΦσW (h) = σ2
W

(
E[X∗I ]ΦσW (f ′′h ) + E[X∗I ]

[
E[f ′′h (W )]− ΦσW (f ′′h )

]
− E[f ′′h (W )XI ]

)
+ σ2

WE
[
f

(3)
h

(
ξW + (1− ξ)W ∗

)
ξ(W ∗ −W )2

]
.

(28)

Combining (24), (26) and (27), we let the corrector to be Ch = σ2
WE[X∗I ]ΦσW (f ′′h )

and we deduce the error bound α(h,X1, · · · , Xn) as in (22).
The last step is to use the invariant property of the normal distribution

under zero bias transformation and the Stein’s equation to obtain

σ2
WΦσW (f ′′h ) = ΦσW (xf ′h) =

1
σ2
W

ΦσW

((
(
x2

3σ2
W

− 1)
)
xh(x)

)
.

�

6.2.2 The Poisson case: Theorem 2.2

Proof. Let us first recall the discrete Taylor formula. For any integers x and
any positive integer k ≥ 1,

g(x+ k) = g(x) + k∆g(x) +
k−1∑
j=0

(k − 1− j)∆2g(x+ j).

Similar as in the Gaussian case, we apply the above formula to right-hand
side of E[h(V )]−PλV

(h) = λV E[gh(V ∗+ 1)− gh(V + 1)] and we shall make
decompositions. Since V ∗−V is not necessarily positive, we take expansion
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around V (i) for the following three terms respectively and obtain

E
[
gh(V ∗ + 1)− gh(V + 1)−∆gh(V + 1)(V ∗ − V )

]
=

n∑
i=1

λi
λV

(
E
[
gh(V (i) + 1) + Y ∗i ∆gh(V (i) + 1) +

Y ∗
i −1∑
j=0

(Y ∗i − 1− j)∆2gh(V (i) + 1 + j)
]

− E
[
gh(V (i) + 1) + Yi∆gh(V (i) + 1) +

Yi−1∑
j=0

(Yi − 1− j)∆2gh(V (i) + 1 + j)
]

− E
[
∆gh(V (i) + 1)(Y ∗i − Yi) +

Yi−1∑
j=0

(Y ∗i − Yi)∆2gh(V (i) + 1 + j)
])

which implies that the remaining term is bounded by∣∣∣E[gh(V ∗ + 1)− gh(V + 1)−∆gh(V + 1)(V ∗ − V )
]∣∣∣

≤ ‖∆2gh‖
n∑
i=1

λi
λV

(
E
[(Y ∗i

2

)
] +
(
Yi
2

)]
+ E

[
|Yi(Y ∗i − Yi)|

])
.

We then make decomposition

E
[
∆gh(V + 1)(V ∗ − V )

]
= PλV

(∆gh(x+ 1))E[Y ∗I − YI ] + cov
(
Y ∗I − YI ,∆gh(V + 1)

)
+
(
E[∆gh(V + 1)]− PλV

(∆gh(x+ 1))
)

E[Y ∗I − YI ].
(29)

Similar as in the Gaussian case, the first term of (29) is the candidate of the
corrector. For the second term, we use again the technique of conditional
expectation and obtain

cov
[
∆gh(V + 1), Y ∗I − YI

]
≤ 1
λV

Var
[
∆gh(V + 1)

] 1
2

( n∑
i=1

λ2
iVar[Y ∗i − Yi]

) 1
2
.

For the last term of (29), we have by the zero order estimation

(
E[∆gh(V +1)]−PλV

(∆gh(x+1))
)
E[Y ∗I −YI ] ≤

6‖∆gh‖
λV

( n∑
i=1

E[Yi|Y s
i −1|]

)2
.

It remains to observe that PλV
(∆gh(x + 1)) = 1

2PλV
(∆2h) and let the cor-

rector to be
CPh =

λV
2
PλV

(∆2h)E[Y ∗I − YI ].

Combining all these terms, we obtain the error bound β(h, Y1, · · ·Yn) as
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below

∣∣E[h(V )]− PλV
(h)− CPh

∣∣ ≤ ‖∆2gh‖
n∑
i=1

λiE
[
|Y ∗i − Yi|

(
|Y ∗i − Yi| − 1

)]
+ Var

[
∆gh(V + 1)

] 1
2

( n∑
i=1

λ2
iVar[Y ∗i − Yi]

) 1
2 + 6‖∆gh‖

( n∑
i=1

E[Yi|Y s
i − 1|]

)2

(30)

where ‖∆gh‖ ≤ 6‖h‖ and ‖∆2gh‖ ≤ 2‖∆gh‖.
�
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