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Pricing formulae for derivatives in insurance using the
Malliavin calculus®

Caroline Hillairet! Ying Jiao* Anthony Réveillac?

July 13, 2017

Abstract

In this paper we provide a valuation formula for different classes of actuarial and financial
contracts which depend on a general loss process, by using the Malliavin calculus. In
analogy with the celebrated Black-Scholes formula, we aim at expressing the expected
cash flow in terms of a building block. The former is related to the loss process which is
a cumulated sum indexed by a doubly stochastic Poisson process of claims allowed to be
dependent on the intensity and the jump times of the counting process. For example, in
the context of Stop-Loss contracts the building block is given by the distribution function
of the terminal cumulated loss, taken at the Value at Risk when computing the Expected
Shortfall risk measure.

1 Introduction

Risk analysis in the context of insurance or reinsurance is often based on the study of properties
of a so-called cumulative loss process L := (Ly)e[o,r) over a period of time [0, T] where T' > 0
denotes the maturity of a contract. Usually, L takes the form

Ny
Li=> X;, te[0,T],
i=1

where N := (Ni)ie[o,r] is a counting process, and the random variables (X;);en« represent
the amount of the claims. A typical contract in reinsurance is the Stop-Loss contract that
offers protection against an increase in either (or both) severity and frequency of a company’s
loss experience. More precisely, Stop-loss contracts provide to its buyer (another insurance
company) the protection against losses which are larger than a given level K and its payoff
function is given by a “call” function. In some cases, there is also an upper limit given by some
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real number M, which specifies the maximal reimbursement amount. Thus the payoff of such
a contract is given by
0, if Ly < K
O(Lr)=< Lr— K, if K<Lp< M, (1.1)
M-K, if Ly > M.

In full generality the risk carried out by the claims is neither hedgeable nor related to a
financial market, hence the premium of the Stop-Loss is equal to E[®(L7)] which immediately
re-writes as

E[®(Lr)] =E [Lrl{p,ex,myy) — KP[Ly € [K, M]] + (M — K)P[Lp > M]. (1.2)

There is a large number of papers describing how to approximate the compound distribution
function of the cumulated loss L7, and to compute the Stop-Loss premium. The aggregate
claims distribution function can in some cases be calculated recursively, using, for example,
the Panjer recursion formula, see Panjer [12] and Gerber [11]. Various approximations of Stop-
Loss reinsurance premiums are described in the literature, some of them assuming a specific
dependence structure.

In analogy with the celebrated Black-Scholes formula, we aim in this paper to express the first
term of the right-hand side of (1.2) in terms of a building block which represents the distribu-
tion function of the terminal loss L. This feature is hidden in the Black-Scholes model since
the terminal value of the stock has an explicit lognormal distribution. More specifically, we aim
in computing E [LTl{LTe[K,M]}] by using the building block z — P[Ly € [K —x, M — z]].
Note that, on the credit derivative market, the payoff function (1.1) can also be related to
Collateralized Debt Obligations (CDOs) where there are several tranches, and so several K
and M levels, which are expressed in proportion of the underlying which is the loss of a given
asset portfolio.

Stop-Loss contracts are the paradigm of reinsurance contracts, but we aim in dealing with
more general payoffs whose valuation involves the computation of the quantity

E[iTh(LTﬂ, (1.3)

where h : R, — R, is a Borelian map and where L is of the form Ly := Zi\fl X;, involving
claims Xi which are related to the ones X; of the original loss L. To be more precise, f/T
will be the effective loss covered by the reinsurance company whereas Ly is the loss quantity
that activates the contract. Typical examples will be given in Section 2.1. Once again, this is
similar to the valuation of CDOs tranches where the recovery rate is often supposed to be a
random variable of beta distribution with mean 40% whereas the realized rate, often revealed
only after the formal bankruptcy, does not necessarily match with this value.

In this paper we provide an exact formula for (1.3) in terms of the building block z +—
E[h(Lr + )] (or of a related quantity for the more general situation (1.3), see (3.4) for a
precise statement). This goal will be achieved by using one of the Malliavin calculus available
for jump processes. Before turning to the exposition of the model, we emphasize that this
methodology goes beyond the analysis of pricing and finds for instance application in the com-
putation of the Expected Shortfall of contingent claims in the realm of risk measures. Indeed,



the expected shortfall is a useful risk measure, that takes into account the size of the expected
loss above the value at risk. Formally it is defined as

ESa(—LT) =E [—LT‘—LT > V@Ra(—LT)] , € (O, 1)

As it is well-known, the expected shortfall coincides with Average Value at Risk (AV@R), that
is

1 1
ESa(~Lr) = AVOQR(~Ly) = / V@R,(—Lr)ds,

if and only if P[—Lp < quT (t)] =t, t € (0,1), where quT(t) denotes the quantile of level
t of —Lp (see Section 2.2.2 for a precise definition). However, already in the trivial example
where the size claims X; are constant equal to 1, this property fails as Ly = Np is a Poisson
random variable which exhibits a discontinuous distribution function. However, our approach
gives an alternative explicit computation of E[L71(7, <] and thus of ES,(—Lr) as

—E[Lrl{1,<p]
P(Ly < B)

ESa(—LT) = ﬂ = —V@Ra(—LT).

We conclude this section with some comments about the modeling of the claims X; and X;.
In the classic Cramer-Lundberg model, the claims are independent and identically distributed
(i.i.d.) and in addition independent of the counting process N which happens to be an inho-
mogeneous Poisson process. In this work we consider a doubly stochastic Poisson process N
and we allow dependency between the size of the claims, their arrivals and the intensity of
N. In particular we do not assume a Markovian setting. The impact of certain dependence
structure on the Stop-Loss premium is studied in the reinsurance literature, such as in Albers
[1], Denuit et al. [9] or De Lourdes Centeno [8|, but those works usually assume dependency
between the successive claim sizes and the arrival intervals. Nevertheless, in the ruin the-
ory literature, some contributions already propose explicit dependencies among inter-arrival
times and the claim sizes, such as Albrecher and Boxma [2|, Boudreault, Cossette, Landriault
and Marceau [7] and related works. A general framework of dependencies is proposed by
Albrecher, Constantinescu, and Loisel [4] in which the dependence arises via mixing through
a so-called frailty parameter. Recently, Albrecher et al. [3] extend duality results that relate
survival and ruin probabilities in the insurance risk model to waiting time distributions in the
‘corresponding’ queueing model. The risk processes have a counterpart in workload models
of queueing theory, and a similar mixing dependencies structure is considered in a queueing
context. Besides, our framework extends the mixing approach of [4] and [3]| by allowing non-
exchangeable family of random variables for the claims amounts. In a similar way, in the
credit risk modeling we can also suppose that the recovery rate depend on the underlying
default intensity such as in Bakshi, Madan and Zhang [5].

We proceed as follows. We first make clear in Section 2 our model for the loss process and
present the insurance contracts for which we will propose a pricing formula. The latter will
be stated and proved as Theorem 3.5 in Section 3. Particular cases of this result to several
types of contracts in insurance are also given in this section. Finally, explicit examples are
presented in Section 4.



2 Model Setup

In this section, we describe the loss process and the associated reinsurance contracts we will
study. Throughout this paper, T" will denote a positive finite real number which represents
the final horizon time.

2.1 The Loss process

We begin by introducing the loss process L := (Lt)te[O,T} where the size of claims and their
arrival times are correlated. Let (Np)icpo,r] be a Cox process (also called doubly stochastic
Poisson process) with random intensity (M¢)¢c[o,7], whose jump times, denoted by (7;)ien+,
model the arrival times of the claims. We suppose that the claim size X; depends on both
the cumulated intensity defined by A; := fg Asds and the claim arrival time 7;. Moreover, it
will also depend on some random variable ¢; where we suppose that (g;);en+ is a sequence of
positive i.i.d. random variables independent of the Cox process N. More precisely, the loss is
given by

Nt
Ly = ZXZ- e with X; o= f(r, Ar,ei), te 0,7, (2.1)
=1

where k is the discounting factor and f : Ri — Ry is a bounded deterministic function. We
provide several examples as below.

Example 2.1. 1. In the classic ruin theory, the claim size is often supposed to be inde-
pendent of the arrival and the intensity process. In this case, we have f(¢,¢,x) = x.

2. In the second example, we suppose that the dependence of f on the exogenous factor
is linear and the linear coefficient is a function of the cumulated intensity A rescaled by
time, i.e., &t which stands for some mean level of the intensity. For instance, let

AR
flt, b z) = \/gx

In this example, if ¢; follows an exponential distribution with parameter 1, then X; =
T4

f(7i,Ar;,€i) follows an exponential distribution with parameter , /5 conditionally to

the vector (7, Ar,).

i

2.1.1 Generalized loss process

We can also consider a more general case where the realized claim sizes (X;);en+ are not exactly
the ones that are computed to activate the reinsurance contract. More precisely, assume that
in addition to the factors (g;);en+, there exists a family of i.i.d. positive random variables
(¥i)ien+ which may depend on the random variables ¢;’s. Let g : ]Rﬁ_ — R, be a deterministic
bounded function. We can define a modified cumulative loss process as

N
Li:= ZQ(TZ‘,ATZ.,62‘,’19@')67'%(257”), te[0,T]. (2.2)
i=1

More precisely, although the insurance contract is triggered by the loss process L, the com-
pensation amount can depend on some other exogenous factors (¢;);en+. This would mean for



instance that the amounts #;’s are much lower than the &;’s. A typical example is given by
the housing insurance market on the American East Coast. Indeed, this region is seasonally
exposed to hurricanes of different magnitudes. Most of the damages impacts the houses of
the insured who may as well buy contracts on other belongings such as cars which are much
less valuable. After a hurricane episode, the re-insurance Stop-Loss contract will be activated
on the basis of the total damages Ly on the houses (which are represented by the claims ¢;)
whereas the effective damages Ly will also include all other insured belongings (which would
be modeled by the #;). In the special case where the function g does not depend on the fourth
variable, the general loss L; reduces to the standard loss defined in (2.1). We give below some
examples of the joint distribution (g;, ;).

Example 2.2. 1. The first natural case is that ¢; and 9; are independent random variables.
For example, each of them can follow an exponential distribution (or Erlang distribution)
with different positive parameters 6; and 65.

2. We can introduce dependence between ¢; and ¥; by using the mixing method in [4]. Let
g; and 9; follow Pareto marginal distributions respectively and a dependence structure
according to a Clayton copula (according to Example 2.3 in [4], this can be achieved
by mixing the two Pareto marginal distributions where the mixing parameter follows a
Gamma distribution).

3. Case of explicit dependence : let ¢; follow a Pareto distribution and 1; follow a Weibull
distribution with form or scaling parameter depending of ;.
2.2 Reinsurance contracts and related quantities
2.2.1 Generalized Stop-loss Contrats

We have seen in the introduction the Stop-Loss contract whose payoff is given by ®(Ly) where
® has been defined in (1.1) and corresponds to a call spread, that is, the difference of two call
functions. Our approach allows us to go beyond the case of the Stop-Loss contract. Consider
now a contract where the reinsurance company pays

0, if Lp < K
&Ly, Lr) = Lr— K, fK<Lr<M, (2.3)
M-K, ifLp>M

with Ly defined in (2.2) if the a priori loss Ly excesses some amount K or belongs to some
interval [K, M]. Then the price of such a contract is :

E[ﬁT1ﬂ¢>K}}—aKPLDTE[K@Aﬂ]+(ﬂl——KjPLLT§zAﬂ. (2.4)

2.2.2 Expected Shortfall

The expected shortfall is a useful risk measure which takes into account the size of the expected
loss above the value at risk. We recall the Expected Shortfall with level « as

ESo(—L7) =E[-Ly|—Ly > V@R, (~L7)], «c(0,1).



where the definition of VQR is
VQRA(X) = —gx(a) = ¢_x(1 - a)

with
g% (t) = inf{z| PX < 2] >t} = sup{z| P[X < z] <t}

qx (t) = sup{z| P[X < 2] <t} =inf{z|PX < x] >t}

It is well known that ES,(X) is equal to AVAQR(X) := {1 f; VQR,(X)ds if and only if
P[X < gk(t)] =t, t € (0,1), which is in particular satisfied if the distribution function of X
is continuous (see e.g. [10, Relation (4.38)]). However, the latter property fails already in the
case where the size claims X; are constant. Thus one can not rely on the above relation and
has to compute directly the conditional expectation ES,(—Ly).

We will provide an alternative expression for the expected shortfall. We denote by 5 :=
—V@QR,(—Lr), then
“E[Lrl{r,<p)]

BSal=Lr) = =3,

where
B = quT(oz) = inf{z|P[Ly > —z] > .}

So once again the key term to compute turns out to be the expectation E [LTl{LT<B}]-

2.3 General payoffs

More generally, we are interested in computing quantities of the form
E |Lrh(Lr)|,

where h : Ry — Ry is a Borelian map with E[h(L7)] < oo. Since in our model, the counting
process is given by a Cox process with stochastic intensity, the building block becomes the
following mapping by using the conditional expectation

z = B [h(Lr 4+ z)|(M)eejo] -

Note that the examples of Section 2.2.1 (respectively of Section 2.2.2) are contained in this
setting by choosing h := 1k 5 for some —oo < K < M < +o0 (respectively h := 1|_ g
and IA/T = LT)

Our approach calls for some stochastic analysis material that we present in the next section.

3 The pricing formulae using the Malliavin calculus

In this section, we establish our main pricing formulae by using the Malliavin calculus. To this
end, we first make precise the Poisson space associated to the loss process. Then we provide
basic tools for the Malliavin calculus.



3.1 Construction of the Poisson space
3.1.1 The counting process and intensity process

We recall that the loss process involves the Cox process (Ni)iejo,r) With its intensity and
jump times, and the family of random variables (¢;);en+. We begin by introducing a general
counting process which will be useful for the construction of (Ny)ejo,r) on a suitable space.
Let ©; be the set of (finite or infinite) strictly increasing sequences in |0, +oco[. We define a
continuous-time stochastic process C on the set {2; as

V (t,wi) € [0, +00[xQy, Cilwy) := card([0,t] Nwy).

Let F¢ = (FF) be the filtration generated by the process C, namely FC := o(Cs, s < t).
It is known that there exists a unique probability measure P; on (Q1, FS) under which the
process C is a Poisson process of intensity 1, that is, for every (s,t) € [0,4+00)?, with s < ¢,
the random variable C; — Cj is independent of F¢ and Poisson distributed with parameter t —s.

We then consider a probability space (€2, A, P2) on which is defined :

(i) a positive stochastic process (A¢)efo,r] such that
T
/ Asds < 400, Py - a.s..
0

(ii) a collection of i.i.d. R?-valued bounded random variables (;,7;);en+ and a R? -random

variable (Z,9) independent from (g;,;)ien+, with (£, 1) £ (e1,71) (Where_é stands for
the equality of probability distributions). We set u the law of the pair (g,).

Assumption 3.1. We assume that X is independent of (g,9;)ien+, and of (£,1).

FA = (.Ff‘)te[O,T] be the right-continuous complete filtration generated by the stochastic
process A. Moreover, we set

t
Ay ::/ Asds, t€[0,T]. (3.1)
0

Let 75V be the o-algebra generated by (g;)ien+ and (U)ien+. Note that only (e;)ien+ and
(9i)ien+ will be involved in the loss process and € and ¥ are just independent copies which
play an auxiliary role. We denote by p the probability law of the couple (g;, ;).

Assumption 3.2. Throughout this paper, we assume that : Ap < +o00, Py — a.s..

3.1.2 The doubly stochastic Poisson process

We now consider the product space (€ := Q) x Qq, F := .Fgo ® A, P:=P; ® Py). By abuse of
notation, any random variable Y on §2; can be considered as a random variable on 2 which
sends w = (wy,wz) to Y (wy). Similarly, any random variable Z on 2y can be considered as a
random variable on  which sends w = (w1, ws) to Z(ws).

We define a counting process N := (N¢).cjo,7) on €2 by using a time change as

Nt(wl,wQ) = CAt(wg)(Wl) = Cf(f )\s(wg)ds(wl)’ te [O,T], ((JJl,WQ) e Q.

7



Note that for any ¢, N; is FS & ]:%—measurable random variable. Moreover, for any fixed wo
in Q9, Ni(-,ws) is an inhomogeneous Poisson process on €y with intensity ¢ — A (we) with
respect to the filtration (F§ )tefo,r] which reads as'

t(w2)

.ﬁ]:EFm<@w—nLKMQ

where [E denotes the expectation with respect to the measure P. For a process (uy)cjo,r) such
that :

E {em(Nths)

J-‘Q], 0<s<t<T,

ug is F-measurable, ¢ € [0,7],
for a.e. wy € N9, (ut(-,wg))te[oﬂ is (.Fﬁt(w))te[o’T}—predictable, (3.2)
E [fOT \ut]dt} < +o0,

we denote by <fOT uSdNS) (w1,wq) the Lebesgue-Stieltjes integral of u(wq,ws) against the mea-

sure N (wq,ws).

For any ¢ € N, we let 7; be the i-th jump time of the process N, namely
Vw= (wl,WQ) (- Q, Ti(w) = inf{t > O, Nt = CAt(UJQ)(wl) > i},

with the convention mp = 0.

3.2 The Malliavin integration by parts formula

We can now state the Malliavin integration by parts formula on the product space. For any
t € [0,7], and wy € €y which is of finite length or has a limit greater than ¢, we define
w1 U {t} in ©Q; as the increasing sequence whose underlying set is the union of w; and t.
The effect of this operator is to add a jump at time ¢ to the Poisson process N. Finally, for
w:= (w1, ws) € Q, and t € [0,T], we set

wU{t} = (w1 U{t},wa),

provided that wy U {¢t} is well defined. The following lemma is a direct extension of the one
presented for example in [13, Corollaire 5] or [14] (see also [15]).

Lemma 3.3. Let u: Qx[0,T] — R be a stochastic process which enjoys (3.2), and F : Q@ — R
be a bounded F-measurable random variable. Then the stochastic process (w,t) — F(w U {t})
1s well-defined P ® dt-a.e. and

T
E [F/ usd Ny
0

3.3 The main result

FpvFU =E Tut F(-U{t})\dt
==l

.F%v]ﬁﬁ}. (3.3)

In this section we present our main result concerning the computation of the quantity

E [iTh (LT)} ,

!By a slight abuse of notation, E H]—"N =FE H}"g ® .7:%] and E H]—"% \% .7-"5”9] =F H]—‘g ® (FpV ]—"5’“9)]



where h : Ry — R, is a Borelian map with E[i(Ly)] < oo and where Ly and Ly are
respectively defined in (2.1) and (2.2). We set

O (x) = E |h(Ly + )| F}|, zeR,. (3.4)

It might be surprising at first glance to consider the conditional expectation given A in the
building block. In fact, as the intensity A of N is random, it can be compared to a Black-Scholes
model with independent stochastic volatility. In that context the Black-Scholes formula would
be written in terms of the conditional law of the terminal value of the stock given the volatility
(which would simply be a lognormal distribution with variance given by the volatility). Recall
that for the insurance contract presented in Section 2.2.1, h := 1k 57 and thus cpﬁ coincides
with the conditional distribution function of L.

Before turning to the statement and the proof of the main result, note that

T
b= / Z,dN,, (3.5)
0
with
A +m
Zs = Zg(s7A875i779i)e_K(T_S)1(7','_1,7','}(8)7 s € [O,T]. (3'6)
i=1

Moreover on the set {A;N = 0}, one has

Zy = g(s, As,e14n,, V14w, e "I, (3.7)
T
As A is a continuous process, Z satisfies Relation (3.2), provided that E [ / ]Zt\dt} < +00.
0

We start our analysis with the following lemma.

Lemma 3.4. Under Assumptions 3.1 and 3.2, for any t € [0,T], it holds that

(g(t, At, E14+Ny» "91+Nt)e_K(T_t)a LT(' U {t})’ At) é (g(t, At, g, E)B_H(T_t)a LT + f(t’ Ata g)e_H(T_t)’ )‘t) .

Proof. We set
Nt Nt
Lt = Zf(Ti,ATi,€Z’)€_K(T_Ti), Lzr = Zf(TZ‘,ATZ.,€Z'+1)€_K(T_Ti), t e [O,T]
i=1 i=1

We first precise the value of Lp(w U {t}) for a fixed element ¢ € (0,7") and for w := (w1, ws)
in © such that ¢ & w; and w; U {t} is well defined (the set of such w has probability 1). By
definition, we have that

Ny (wu{t})
LrwUf{th) = Y frwU{t}), Ao (wa), gi(ws))e " T
i=1

Note that one has
Ti(w), if i < N(w),
VieN, nwU{t}) =<t, ifi = Ny(w) +1
Ti—1(w), if i > Ny(w) + 1.



Therefore we can write Ly (w U {t}) as the sum of three terms as follows

Nt(w
Lr(wU {t}) = an 1), Ay (w2), €4(wz) e T

+f(t Ay (wo), €1+Nt(w)(w2))€_“(T_t) (3.8)
NT(LU +1

Y Frmawn), An ) (w2), ei(wz))e T D),
i= Nt( )+2

By definition, the first term in the sum is just L;(w). Moreover, by a change of index we can
write the third term as
NT(LU

> FEW), Ay (wa), g (w2))e ") = L (w) — Lf (). (3.9)

i= Nt(w)—i—l
Therefore by (3.8) the following equality holds almost surely
f(t7At7€1+Nt)e_K(T_t) - (LT( U {t}) - Lt) - (L¥ - L;r) (310)

Moreover, from the decomposition formula (3.8) we also observe that 14y, is independent of
Li+ L3 — L} given F ® F2. In addition, by Assumption 3.1 the conditional law of &1,
given FC ® ]:% identifies with the law of € since F* is independent of ]:%.

We now compute the characteristic functions of the two random vectors of interest. Let
x be the characteristic function of the random vector

(g(t7 At7 €14+ Ny» 191-1-]\715)eim(Tﬂt)v LT(' U {t})7 )‘t) .

Let (u1,u2,u3) € R3. One has

Y(ui, ug, ug) :== E [ iurg(t,Ae14 N, 9148y )e T ™D tiug Ly (- U{t})+ZU3>\t]
7 7 *
-F |:eiu3>\t eiU19(t,At761+Nt,191+Nt)6_“(T_t)+iU2(Lt-i-e_’i(T_t)(f(t,/\t ,€1+Nt)+L¥—Lj)}

—F |:eiu3>\t eiug (Lt-l—L;—L:)eiuge_K(T_t)f(t,At761+Nt)eiule_K(T_t)g(t7At,61+Nt,’191+Nt)i| .

Since €14, and Y14y, are independent of L; + L; — L;F given .Fgo ® FA, we obtain that
FeR|,

where we also use the fact that the probability law of (€14 n;, U1+ n,) given FE @ F2 coincides
with g (which, we recall, is the probability law of (£,4)). Moreover, from (3.9) we observe
that L; + L}' — L;" has the same law as L7 conditioned on ]:go ® ]:7):. Therefore, we obtain

E |:eiug)\t eiuge’”(T’t)f(t,At,E) eiule’“(T*t)g(t,At,E,g)E |:eiu2 (LH—L;—L;L)

X(u1, ug, u3) =

. ; —r(T—t) =\ 4 —r(T—t) =9) 4
X(ula ua, U3) _ E[ezus)\t pluze f(t,A¢E) plue g(t,A¢,E,9) eZ'lLQLT]

_ E[eiugefn(Tft)f(t,At,g) eiul(eﬂi(T*t)g(t,At,E,E)qLLT)eiug)\t]

)

which shows that x coincides with the characteristic function of the vector
(g(t7 At7 g? E)eili(Tit)a LT + f(t7 At7 g)e*:"u(T*t)’ )‘t) .

The lemma is thus proved. O

10



We now turn to the statement and the proof of the main result of this paper.

Theorem 3.5. Recall that (g;,9;)ien+ and (£,9) are i.i.d. with common law p. Under the
Assumptions 3.1 and 3.2, it holds that

E [Lrh(Ly)]
T
_ / (T {g(t,/\tfa 9) A o (f(t,At,E)e*n(T—t))] dt

0
T
= 2/ e "T-YE {g(t,At,x,y))\tgpﬁ (f(t,At,x)ef””(Tft))] p(dx, dy) dt, (3.11)
r2 Jo

where Ly is defined in (2.2) and the mapping ©%(x) := E [W(L7 + 2)|F3] is defined in (3.4).

Proof. Assumptions 3.1 and 3.2 are in force. Using the relation (3.5) and the integration by
parts formula on the Poisson space (3.3), it holds that

E[Lrh(Lr)| =E [E[Lrh (LT)(F*’? v 7]
Fer v]-“%” =E [

By Relation (3.7) and the fact that the set {A;N # 0} is negligeable, we obtain

/ (LU L) Atdt}

—E [E [h (L7) /OT Z,dN, i

E [ﬁTh (LT)} ) [ /0 ' 9t Mgy e, Dren, e T=Oh (Lr(- U {t))) Atdt]

T
= / E [g(At, €1+Nt,191+Nt)€_H(T_t)h (LT(- U {t})) )\t] dt.
0

Finally, by Lemma 3.4, the above formula leads to

T
E [LT]-{LTG[K,M}}] = / E [g(t, At,g, ﬂ)eiﬁ(T*t)h (LT + f(t, At,g)eili(Tit)> )\t} dt.
0
Since € is independent of ]:% V F¢, one has

E [h <LT + f(At,E)e*“(T*t)) ‘ FpV a(g)} =t <f(t, At’g)e,H(T,t)> '

Therefore
T
E |:LTh (LT)] = / E |:g(t7 At7g7 g)ein(Tit))‘t(pg (f(ta At7g)eili(T7t)7 f(ta At7g)eili(T7t)>i| dt
0
T
— [ [ e TR gt Avn) ek (£(8 Avvm)e ") ] dt o, dy),
r2 Jo

as asserted by the theorem. O

Remark 3.6. 1. Note that from Equality (3.11), it is clear that our approach only requires
the knowledge of the conditional law of Ly given A (via the mapping ¢)) and not
the one of the pair (LT,ﬁT). This seems to be particularly useful for the numerical
approximation of the aforementioned expectation.

11



2. The theorem above provides us the relation of the pricing formula with respect to the
intensity process (A¢)i>o of the counting process.

Relation (3.11) allows us to give a lower (respectively upper) bound on the price if h is
assumed to be convex (respectively concave).

Corollary 3.7. Under the assumptions of Theorem 3.5, it holds that :

(i) if h is convez, then
i [iTh (LT)]

/ / w(T— t)IE (t A,z y) M h <E[LT‘]:%] + f(t,At,:c)e_“(T_t)ﬂ w(dz, dy) dt.
RQ

(i) if h is concave, then
E [iTh (LT)]

/ / (t A,z y) M h <E[LT‘]:7>‘1] + f(t,At,:c)ef'i(Tft)ﬂ w(dz, dy) dt.
R2

Proof. We prove (i) as statement (ii) follows the same line. As h is assumed to be convex,
Jensen’s inequality implies that

@) > b (BlLr|FY) +2), zeR,.

The result is then obtained by plugging this estimate in Relation (3.11). O

4 Applications and examples

In this section, we provide some application examples of our main result, in particular for the
(generalized) stop-loss contract. Such explicit computations will also be useful for the CDO
tranches and expected shortfall risk measure.

4.1 Computation of the building block
We first focus on the building block ¢% (defined in (3.4)) when h := 1y ny :

ox(z) = goﬁ(a:) =P {LT €K —x,M— :U]|]:rj‘~] , xeRy

which corresponds to the payoff of a stop-loss contract or a CDO tranche. Let F¢ := o(g;, i €
N*). For any i € N*, we set X; := f(m, A, &) and = in Ry, we have

P[Lr e [K—x,M—x]‘f%vfﬂ

Nt
=P [Z X;e"i ¢ (K —z)e™ (M — )eT] | Fp v .7-"6]
i=1

12



k
ZXie’m € [(K —x)eT (M — z)e]
i=1

400
- Z E
k=1

+o00 k
= Ze* Iy Asds/ P [Z Xietti € (K —z)eT (M — z)eT]
k=1 Sk Li=1

Np =k, F)V f*f] P[Np = k|F3)]

FRV .7-“1 Ay dty -+ Ny, diy,

+o0
=1 s, JRE (8 ziertic[(K—a)enT (M—z)erT]} X (1.5 1yeee,dTr) A dty 1 At
= ol

(4.1)
}'%] :

It just remains to compute the joint distribution of the claims X (1.4 in different situations.
In particular, we provide below an explicit example.

where S, := {O <t i << < T}, X(l:k) = (Xl,. .. ,Xk) and

£|)?(1:k) (dﬂ?l, s ,dek) =P [X(lk;) S (dﬂ?l, . ,dek)

Model on ¢; : We assume that (g;);en+ are i.i.d. random variables with Pareto distri-
butions P(ae, ;) with (ae, 8:) € (R%)? whose density 1. is defined as

a?s
1/15(2) = /BazﬁsT 1{22a5}d2.

Choosing f(t,¢,z) := \/%x, the conditional distribution E‘)?(l (dxy,...,dzy) in Relation (4.1)

:k)
J—“%]

becomes

(d.%'l,. .o ,dmk

)
A A
< Aglf" ) jEk) € (dl’l,...,d.%'k)
V4 V 2.

b /A

= H]P’ [ ;i g; € dx; .7:%]
i=1 v
(e

= H /8{-: Z'65+1 l{zz> Atl

11 : _\/Tas}dzi.

i

(A
ﬁX(l:k)

=P

The next step to compute the right-hand side of Relation (3.11) is to specify the joint law of
(6 1, ’191 )

Model on (g;,%;) : We assume that (g;,9;);en+ are i.i.d. random vectors, with marginal
distributions following Pareto distributions P(ae, B:) and P(ay, By) (for a set of parameters
Qe, Pe, ag, By > 0) respectively. The dependence structure is modeled through a Clayton cop-

1
ula with parameter 6 > 0. We recall that the Clayton copula is C'(u,v) := (u™? + 070 —1) ¢
and the density ¢ of the Clayton copula is given by

c(u,v) = (14 0)(ww) Pu ™ + 00 —1)"5 2

13



The joint distribution of (e1,1) is then given by

p(dz, dy) = c(Fe(x), Fy(y)) e (2)s (y)dady,

Be

o
with F.(z) = <1 — gf;g) and Fy(z) = ( - ﬁ)'

Joint law of (A, A;) : The final step in the computation of Relation (3.11) is to make
precise the joint law of (A, A;). More precisely, we need to compute

£ [g(t’At’x’y) At (K — f(t, Ay x)e "I M — f(t,At,g;)e*“(T*t))]
Assume the intensity process (At)te[O,T} is given by
)\t = )\0 eXp(QIBWt)

where W is a Brownian motion, and § a constant (non null). Then the cumulative intensity
is

t
A = )\0/ exp(28Ws)ds.
0

By Borodin and Salminen [6] (page 169), the joint law of (A, W) is given by

A Xo(1+e2P2)\ Aoe’?
P (A € dvo, Wy € dz) = % exp <—%> 1324/ <%> 1{ysoydudz

where the function

e 00 2
iy(2) = ;6 :y ; exp <—zch(:n) - %) sh(z) sin(%)d:ﬂ.

The expectation term in the right-hand side of equation (3.11) is then

E [Q(t,At,Cﬂ,y) At O (K — f(t,At,:C)e_“(T_t),M _ f(t’At,x)e—m(T—t))]

2 2Bz Bz
U (T—t U -1\ AolB] Ao(l+e )\ . Age
:/WZ a(t, v, z, ¥)oy (Kf,/;g;e r( 1)71V171/Zze ro( r))gTEMz o (=25 g ) izee | ha 1> oy dvdz.

4.2 A Black-Scholes type formula for generalized Stop-Loss contracts in
the Cramer-Lundberg

As an illustration, we conclude our analysis by specifying our result in the classic Cramer-
Lundberg model. More precisely, we assume that the Cox process is an homogeneous Poisson
process with constant intensity A\g > 0 and set h := 1 5], with K < M. The building block
reduces to the distribution function

o (2) == Lpﬁo(m) =P[Lre K —z,M—2z]], z€R,. (4.2)

In that case we omit the dependency on A for the mappings f and g (as Ay = tAo).

14



Corollary 4.1. Under the assumptions of Theorem 3.5, it holds

T
E [LTILTG[K,M}] = )xo/o /}R2 ef””(T*t)g(t,x,y) ©ro (f(t,:c)e*“(T*t)> w(dx, dy)dt,
+

(recall that p = E(gﬁ)).

If we assume furthermore that f(¢,x2) = g(t,z,y) = x and k = 0, then the loss process
L7 corresponds to the cumulated loss of the classic Cramer-Lundberg model. In this context,
a huge literature deals with the computation of the ruin probability and related quantities,
such as the discounted penalty function at ruin (Gerber-Shiu function). Others papers are
concerned with the pricing of Stop-Loss contract. The pricing relies on the computation of
a term of the form [ []g[ ydF(y) with F' being the cumulative distribution function of the loss
process L7, and the discussion in the literature mainly focuses on the derivation of the com-
pound distribution function F' (usually calculated recursively, using Panjer recursion formula
and numerical methods/approximations) cf. [12] and [11]. Our Malliavin approach provides
another formula which reads as

E [£T1LTE[K7M}] - )\OT/R 2 (F(M — z) — F(K — z))u(dz). (4.3)

Note that our result indeed coincides with the one obtained in [11]. Indeed, if one translates
in a general setting Formula [11, (6)] (as p is constrained to have a finite support in N in [11])
the distribution F' satisfies

ydF(y) = AT /R rdF(y — x)p(dz),

from which one deduces that

K

/M ydF (y) = AT /KM /R+ zp(dz)dF (y — x)

AT /R+ x /KM dF (y — x)p(dz)

)\OT/R z(F(K —x) — F(M — z))u(dx),

which is exactly (4.3).
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