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Abstract

We present a general model for default times, making precise the role of the intensity process, and
showing that this process allows for a knowledge of the conditional distribution of the default only “before
the default”. This lack of information is crucial while working in a multi-default setting. In a single default
case, the knowledge of the intensity process does not allow us to compute the price of defaultable claims,
except in the case where the immersion property is satisfied. We propose in this paper a density approach
for default times. The density process will give a full characterization of the links between the default
time and the reference filtration, in particular “after the default time”. We also investigate the description
of martingales in the full filtration in terms of martingales in the reference filtration, and the impact of
Girsanov transformation on the density and intensity processes, and on the immersion property.
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1. Introduction

Modelling default time for a single credit event has been widely studied in the literature, the
main approaches being the structural, the reduced form and the intensity ones. In this context,
most works are concentrated (for pricing purpose) on the computation of conditional expectations
of payoffs, given that the default has not occurred, and assuming some conditional independence
between the default time and the reference filtration. In this paper, we are interested in what
happens after a default occurs: we find it important to investigate the impact of a default event
on the rest of the market and what goes on afterwards. The first motivation of this work was the
multi-default setting.

Furthermore, in a market with multiple defaults, it will be important to compute the prices
of a portfolio derivative on the disjoint sets before the first default, after the first and before the
second one and so on. Our work will allow us to use a recurrence procedure to provide these
computations, which will be presented in a companion paper [7].

We start with the knowledge of the conditional distribution of the default time τ , with
respect to a reference filtration F = (Ft )t≥0 and we assume that this conditional distribution
admits a density (see the next section for a precise definition). We firstly reformulate the
classical computation result of conditional expectations with respect to the observation σ -algebra
Gt := Ft ∨ σ(τ ∧ t) before the default time τ , i.e., on the set {t < τ }. The main purpose is then
to deduce what happens after the default occurs, i.e., on the set {τ ≤ t}. We present computation
results of G = (Gt )t≥0 conditional expectations on the set {τ ≤ t} by using the conditional
density of τ and point out that the whole term structure of the density is needed. By establishing
an explicit link between (part of) density and intensity, which corresponds to the additive and
multiplicative decomposition related to the survival process (Azéma supermartingale of τ ), we
make clear that the intensity can be deduced from the density, but that the reverse does not hold,
except when certain strong assumption, as the H-hypothesis, holds. These results show that the
density approach is suitable in this after-default study and explain why the intensity approach is
inadequate for this case.

Note that, even though the “density” point of view is inspired by the enlargement of filtration
theory, we shall not use classical results on progressive enlargements of filtration. In fact, we
take the opposite point of view: we are interested in G-martingales and their characterization in
terms of F-(local) martingales. Moreover, these characterization results allow us to give a proof
of a decomposition of F-(local) martingales in terms of G-semimartingales.

We show that changes of probability are obtained from the knowledge of a family of
positive F-martingales (βt (θ), t ≥ θ) by using a normalization procedure and we study how
the parameters of the default (i.e., the survival process, the intensity, the density) are modified
by a change of probability in a general setting (we do not assume that we are working in a
Brownian filtration, except for some examples), and we characterize changes of probability that
do not affect the intensity process. We pay attention to the specific case where the dynamics of
underlying default-free processes are changed only after the default, which shows the impact of
the default event.

The paper is organized as follows. We first introduce in Section 2 the different types of
information we are dealing with and the key hypothesis of density. In Section 3, we establish
results on computation of conditional expectations, on the “before-default” and “after-default”
sets. The immersion property is then discussed. The dynamic properties of the density process
are presented in Section 4 where we make precise the links between this density process and
the intensity process. We present the characterization of G-martingales in terms of F-local
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martingales in Section 5 and we give a Girsanov type property and discuss the stability of
the immersion property and the invariance of intensity in Section 6. Finally, we make some
conclusion remarks in the last section.

2. The different sources of information

In this section, we specify the link between the two filtrations F and G, and make some
hypotheses on the default time.

A strictly positive and finite random variable τ (the default time) is given on a probability
space (Ω ,A,P). We assume that the law of τ admits a density with respect to η, a non-negative
non-atomic σ -finite measure on R+. The space Ω is supposed to be endowed with a filtration
F = (Ft )t≥0 which satisfies the usual conditions, that is, the filtration F is right-continuous and
F0 contains all P-null sets of A. Before the default time τ , i.e., on the set {t < τ }, the σ -algebra
Ft represents the information accessible to the investors at time t . When the default occurs,
the investors will add this new information (i.e., the knowledge of τ ) to the σ -algebra Ft in a
progressive enlargement setting.

One of our goals is to show how the knowledge of the conditional law of τ with respect to
Ft allows to compute the conditional expectations in the new filtration. We assume that, for any
t ≥ 0, the conditional distribution of τ with respect to Ft is smooth, i.e., that the Ft -conditional
distribution of τ admits a density with respect to η.

In other words, we introduce the following hypothesis, that we call density hypothesis. This
hypothesis will be in force in this paper. We begin by the static case where the conditional
probabilities are considered at a fixed time; in the next section, we shall discuss the dynamic
version for stochastic processes.

Hypothesis 2.1 (Density Hypothesis). We assume that η is a non-negative non-atomic measure
on R+ and that for any time t ≥ 0, there exists an Ft ⊗ B(R+)-measurable function (ω, θ) →
αt (ω, θ) such that for any (bounded) Borel function f ,

E[ f (τ )|Ft ] =

∫
∞

0
f (u)αt (u)η(du), a.s. (1)

The family αt (.) is called the conditional density of τ with respect to η given Ft (in short the
density of τ if no ambiguity). Then, the distribution of τ is given by P(τ > θ) =

∫
∞

θ
α0(u)η(du).

Note that, from (1), for f = 1, for any t ,
∫
∞

0 αt (θ)η(dθ) = 1, a.s. The conditional distribution
of τ is characterized by

St (θ) := P(τ > θ |Ft ) =

∫
∞

θ

αt (u)η(du), P− a.s. (2)

The family of random variables

St := St (t) = P(τ > t |Ft ) =

∫
∞

t
αt (u)η(du) (3)

plays a key role in what follows. Observe that one has

{τ > t} ⊂ {St > 0} =: At P− a.s. (4)

since P(Ac
t ∩ {τ > t}) = 0. Note also that St (θ) = E[Sθ |Ft ] for any θ ≥ t .
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More generally, if an Ft ⊗ B(R+)-measurable function (ω, θ) → Yt (ω, θ) is given, the Ft -
conditional expectation of the r.v. Yt (τ ) := Yt (ω, τ(ω)), assumed to be integrable, is given by

E[Yt (τ )|Ft ] =

∫
∞

0
Yt (u)αt (u)η(du). (5)

Notation: In what follows, we shall simply say that Yt (θ) is an Ft ⊗ B(R+)-random variable
and even that Yt (τ ) is an Ft ⊗ σ(τ)-random variable as a short cut for Yt (θ) is Ft ⊗ B(R+)-
measurable.

Note that if τ is an F-stopping time, then it may admit a density for t smaller than θ . However,
since St (θ) = 1{τ>θ} for t ≥ θ , it never admits a density on this set.

Corollary 2.2. The default time τ avoids F-stopping times, i.e., P(τ = ξ) = 0 for every F-
stopping time ξ .

Proof. Let ξ be an F-stopping time bounded by a constant T . Then, the random variable
Hξ (t) = 1{ξ=t} is FT ⊗ B(R+)-measurable, and, η being non-atomic

E[Hξ (τ )|Ft ] = E[E[Hξ (τ )|FT ] |Ft ] = E
[∫
∞

0
Hξ (u)αT (u)η(du)|Ft

]
= 0.

Hence, E[Hξ (τ )] = P(ξ = τ) = 0. �

Remark 2.3. By using the density approach, we adopt an additive point of view to represent the
conditional probability of τ : the conditional survival function St (θ) = P(τ > θ | Ft ) is written
in the form St (θ) =

∫
∞

θ
αt (u)η(du). In the default framework, the “intensity” point of view is

often preferred, and one uses the multiplicative representation St (θ) = exp(−
∫ θ

0 λt (u)η(du)).
In the particular case where η denotes the Lebesgue measure, the family of Ft -random variables
λt (θ) = −∂θ ln St (θ) is called the “forward intensity”. We shall discuss and compare these two
points of view further on.

3. Computation of conditional expectations in a default setting

The specific information related to the default time is the knowledge of this time when it
occurs. It is defined in mathematical terms as follows: let D = (Dt )t≥0 be the smallest right-
continuous filtration such that τ is a D-stopping time; in other words, Dt is given by Dt = D0

t+
where D0

t = σ(τ ∧ t) and represents the default information. By definition, any Dt -r.v. can be
written in the form f (t)1{t<τ } + f (τ )1{τ≤t} where f is a Borel function. This filtration D will
be “added” to the reference filtration to define the filtration G := F ∨ D, which is made right-
continuous and complete. The filtration G is the smallest filtration containing F and making τ a
stopping time. Any Gt -r.v. HGt may be represented as

HGt = HFt 1{τ>t} + Ht (τ )1{τ≤t} (6)

where HFt is an Ft -r.v. and Ht (τ ) is an Ft ⊗ σ(τ)-random variable.1 In particular,

HGt 1{τ>t} = HFt 1{τ>t} a.s., (7)

1 This is a direct consequence of Lemma 4.4 in [13].
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where the random variable HFt is the Ft -conditional expectation of HGt given the event {τ > t},
well defined on the set At = {St > 0}, hence on the set {τ > t}, as

HFt =
E[HGt 1{τ>t}|Ft ]

P(τ > t |Ft )
=

E[HGt 1{τ>t}|Ft ]

St
a.s. on At ; HFt = 0 otherwise . (8)

3.1. Conditional expectations

The definition of G allows us to compute conditional expectations with respect to Gt in terms
of conditional expectations with respect to Ft . This will be done in two steps, depending whether
or not the default has occurred: as we explained above, before the default, the only information
contained in Gt is Ft ; after the default, the information contained in Gt is, roughly speaking,
Ft ∨ σ(τ).

The Gt -conditional expectation of an integrable σ(τ)-r.v. (of the form f (τ )) is given by

αGt ( f ) := E[ f (τ )|Gt ] = α
bd
t ( f )1{τ>t} + f (τ )1{τ≤t}

where αbd
t is the value of the Gt -conditional distribution before the default, given by

αbd
t ( f ) :=

E[ f (τ )1{τ>t}|Ft ]

P(τ > t |Ft )
a.s. on {τ > t}.

Recall the notation St = P(τ > t |Ft ). On the set {τ > t}, the “before-default” conditional
distribution αbd

t admits a density with respect to η, and is given by

αbd
t ( f ) =

1
St

∫
∞

t
f (u)αt (u)η(du) a.s.

The same calculation as in (5) can be performed in this framework and extended to the
computation of Gt -conditional expectations for a bounded FT ⊗ σ(τ)-r.v.

Theorem 3.1. Let YT (τ ) be a bounded FT ⊗ σ(τ)-random variable. Then, for t ≤ T ,

E[YT (τ )|Gt ] = Y bd
t 1{t<τ } + Y ad

t (T, τ )1{τ≤t} P− a.s. (9)

where

Y bd
t =

E
[∫
∞

t YT (u)αT (u)η(du)|Ft
]

St
1{St>0} P− a.s.

Y ad
t (T, θ) =

E
[
YT (θ)αT (θ)|Ft

]
αt (θ)

1{αt (θ)>0} P− a.s. (10)

Proof. The computation on the set {t < τ } (the pre-default case) is obtained following (7), (8)
and using (5) and the fact that T ≥ t .

For the after-default case, we note that, by (6), any Gt -r.v. can be written on the set {τ ≤ t} as
Ht (τ )1{τ≤t}. Assuming that the test r.v. Ht (τ ) is positive (or bounded), then from (9),

E[Ht (τ )1{τ≤t}YT (τ )] = E
[

Ht (τ )1{τ≤t}Y
ad
t (T, τ )

]
.
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Using the fact that T ≥ t and introducing the density αT (θ), we obtain

E[Ht (τ )1{τ≤t}YT (τ )] =

∫
∞

0
η(dθ)E[Ht (θ)1{θ≤t}YT (θ)αT (θ)]

=

∫
∞

0
η(dθ)E

[
Ht (θ)1{θ≤t}E[YT (θ)αT (θ)|Ft ]

]
,

E
[

Ht (τ )1{τ≤t}Y
ad
t (T, τ )

]
=

∫
∞

0
η(dθ)E

[
Ht (θ)1{θ≤t}Y

ad
t (T, θ)αt (θ)

]
.

The above two equalities imply (10). �

3.2. Immersion property or H-hypothesis

In the expression of the density αt (θ), the parameter θ plays the role of the default time.
Hence, it is natural to consider the particular case where for any θ ≥ 0,

αt (θ) = αθ (θ), ∀t ≥ θ dP− a.s., (11)

i.e., the case where the information contained in the reference filtration after the default time
gives no new information on the conditional distribution of the default. In that case,

Sθ = P(τ > θ |Fθ ) = 1−
∫ θ

0
αθ (u)η(du) = 1−

∫ θ

0
αu(u)η(du).

Furthermore, for any t > θ ,

St (θ) = P(τ > θ |Ft ) = 1−
∫ θ

0
αt (u)η(du) = Sθ , a.s.

Hence, the knowledge of S implies that of the conditional distribution of τ for all positive t and
θ : indeed, one has St (θ) = E[Sθ |Ft ] (note that, for θ < t , this equality reduces to St (θ) = Sθ ).
In particular, S is decreasing and continuous, this last property will be useful later.

It follows that P(τ > t |Ft ) = P(τ > t |F∞). This last equality is known to be equivalent to
the immersion property [4], also known as the H-hypothesis, stated as: for any fixed t and any
bounded Gt -r.v. YGt ,

E[YGt |F∞] = E[YGt |Ft ] a.s. (12)

This is an important hypothesis in the credit risk analysis, notably for what happens before the
default. However, it becomes restrictive since it allows no further information for what happens
after the default time. In particular, in a multi-default setting, the immersion property between
F ∨ D1 and F ∨ D1

∨ D2 is a very strong assumption where D1 and D2 are filtrations associated
to two default times.

Conversely, if the immersion property holds, then (11) holds. In that case, the conditional
survival functions St (θ) are constant in time on [θ,∞), i.e., St (θ) = Sθ (θ) = Sθ for t > θ .
Observe that the previous result (10) on the conditional expectation on the after-default set
{τ ≤ t} takes a simpler form: Y ad

t (T, θ) = E[YT (θ)|Ft ], a.s. for θ ≤ t ≤ T , on the set
{αθ (θ) > 0}. This means that under the immersion property, the information concerning the
default distribution disappears when it concerns the after-default computation.

Remark 3.2. The most important example where the immersion property holds is the widely
studied Cox-process model introduced by Lando [15].
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4. A dynamic point of view and density process

Our aim is here to give a dynamic study of the previous results. We shall call (St , t ≥ 0)
the survival process, which is an F-supermartingale. We have obtained equalities for fixed t ,
we would like to study the conditional expectations as stochastic processes. One of the goals is
to recover the value of the intensity of the random time, and the (additive and multiplicative)
decompositions of the supermartingale S. Another one is to study the link between G- and F-
martingales: this is for interest of pricing.

In this section, we present the dynamic version of the previous results in terms of F- or G-
martingales or supermartingales. To be more precise, we need some “universal” regularity on
the paths of the density process. We treat some technical problems in Section 4.1 which can be
skipped for the first reading.

4.1. Regular version of martingales

One of the major difficulties is to prove the existence of a universal càdlàg martingale version
of the family of densities. Fortunately, results of Jacod [11] or Stricker and Yor [19] help us to
solve this technical problem. See also Amendinger’s thesis [2] for a presentation of the problem,
and detailed proofs of some results used in our paper.

Jacod ([11], Lemme 1.8) establishes the existence of a universal càdlàg version of the density
process in the following sense: there exists a non-negative function αt (ω, θ) càdlàg in t , optional
w.r.t. the filtration F̂ on Ω̂ = Ω × R+, generated by Ft ⊗ B(R+), such that

• for any θ , α.(θ) is an F-martingale; moreover, denoting ζ θ = inf{t : αt−(θ) = 0}, then
α.(θ) > 0, and α−(θ) > 0 on [0, ζ θ ), and α.(θ) = 0 on [ζ θ ,∞).
• For any bounded family (Yt (ω, θ), t ≥ 0) measurable w.r.t. P(F) ⊗ B(R+), (where P(F)

is the F-predictable σ -field), the F-predictable projection of the process Yt (ω, τ(ω)) is the
process Y (p)t =

∫
αt−(θ)Yt (θ)η(dθ).

In particular, for any t , P(ζ τ < t) = E[
∫
∞

0 αt−(θ)1{ζ θ<t}η(dθ)] = 0. So, ζ τ is infinite a.s.
• We say that the process (Yt (ω, θ), t ≥ 0) is F-optional if it is O(F) ⊗ B(R+)-measurable,

where O(F) is the optional σ -field of F. In particular, the process (Yt (ω, t), t ≥ 0) is optional.

We are also concerned with the càdlàg version of the martingale (St (u), t ≥ 0) for any
u ∈ R+. By the previous result, we have a universal version of their predictable projections,
St−(u) = S(p)t (u) =

∫
∞

u αt−(θ)η(dθ). It remains to define St (u) = limq∈Q+, q↓t S(p)q (u) to
obtain a universal càdlàg version of the martingales S.(u). Remark that to show directly that∫
∞

u αt (θ)η(dθ) is a càdlàg process, we need stronger assumption on the process αt (θ) which
allows us to apply the Lebesgue theorem w.r.t. η(dθ).

To distinguish the before-default and after-default analysis, we consider naturally the two
families of density processes (αt (θ), t < θ) and (αt (θ), t ≥ θ). Given the martingale property,
we have αt (θ) = E[αθ−(θ)|Ft ] for t < θ and we choose the diagonal terms αθ (θ) = αθ−(θ).

4.2. Density and intensity processes

We are now interested in the relationship between the density and the intensity processes of
τ . As we shall see, this is closely related to the (additive and multiplicative) decompositions of
the supermartingale S, called the survival process.
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4.2.1. F-decompositions of the survival process S
In this section, we characterize the martingale and the predictable increasing part of the

additive and multiplicative Doob–Meyer decomposition of the supermartingale S in terms of
the density.

Proposition 4.1. (1) The Doob–Meyer decomposition of the survival process S is given by
St = 1 + MFt −

∫ t
0 αu(u)η(du) where MF is the càdlàg square-integrable F-martingale

defined by

MFt = −
∫ t

0

(
αt (u)− αu(u)

)
η(du) = E

[∫
∞

0
αu(u)η(du)|Ft

]
− 1, a.s.

(2) Let ζF := inf{t : St− = 0} and define λFt :=
αt (t)
St−

on {t < ζF} and λFt := λ
F
t∧ζF

on {t ≥ ζF}.

The multiplicative decomposition of S is given by

St = LFt e−
∫ t

0 λ
F
s η(ds) (13)

where LF is the F-local martingale solution of dLFt = e
∫ t

0 λ
F
s η(ds)dMFt , LF0 = 1.

Proof. (1) First notice that (
∫ t

0 αu(u)η(du), t ≥ 0) is an F-adapted continuous increasing
process (the measure η does not have any atom). By the martingale property of (αt (θ), t ≥ 0),
for any fixed t , one has

St = P(τ > t |Ft ) =

∫
∞

t
αt (u)η(du) = E

[∫ ∞
t

αu(u)η(du)|Ft

]
, a.s.

Therefore, the non-negative process St+
∫ t

0 αu(u)η(du) = E[
∫
∞

0 αu(u)η(du)|Ft ] is a square-
integrable martingale since

E
[(∫ ∞

0
αu(u)η(du)

)2]
= 2E

[∫ ∞
0

αu(u)η(du)
∫
∞

u
αs(s)η(ds)

]
= 2E

[∫ ∞
0

Suαu(u)η(du)
]
≤ 2.

We shall choose its càdlàg version if needed. Using the fact that
∫
∞

0 αt (u)η(du) = 1 and that
α(u) is a martingale, we obtain

∀t, E
[∫ ∞

0
αu(u)η(du)|Ft

]
= 1−

∫ t

0
(αt (u)− αu(u))η(du), a.s.

and the result follows.
Note that the square integrability property of MF is a general property, which holds for any
Azéma supermartingale. See e.g. [17, p. 380].

(2) Setting LFt = St e
∫ t

0 λ
F
s η(ds), integration by parts formula and (1) yield to

dLFt = e
∫ t

0 λ
F
s η(ds)dSt + e

∫ t
0 λ
F
s η(ds)λFt Stη(dt) = e

∫ t
0 λ
F
s η(ds)dMFt ,

which implies the result. �

Remarks 4.2. (1) Note that, from (4), P(ζF ≥ τ) = 1.
(2) The survival process S is a decreasing process if and only if the martingale MF is constant

(MF ≡ 0) or equivalently if and only if the local martingale LF is constant (LF ≡ 1). In that
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case, by Proposition 4.1, S is the continuous decreasing process St = e−
∫ t

0 λ
F
s η(ds). Hence, for

any pair (t, θ), t ≤ θ , the conditional distribution is given by St (θ) = E[e−
∫ θ

0 λ
F
s η(ds)
|Ft ].

(3) The condition MF ≡ 0 can be written as
∫ t

0 (αt (u)− αu(u))η(du) = 0 and is satisfied if, for
t ≥ u, αt (u)− αu(u) = 0 (immersion property), but the converse is not true.

4.2.2. Relationship with the G-intensity
The intensity approach has been used extensively in the credit literature. We study now in

more details the relationship between the density and the intensity, and notably between the F-
density process of τ and its intensity process with respect to G. We first recall some definitions.

Definition 4.3. Let τ be a G-stopping time. The G-compensator of τ is the G-predictable
increasing process ΛG such that the process (NGt = 1{τ≤t} − ΛGt , t ≥ 0) is a G-martingale.
If ΛG is absolutely continuous with respect to the measure η, the G-adapted process λG such
that ΛGt =

∫ t
0 λ
G
s η(ds) is called the (G, η)-intensity process or the G-intensity if there is no

ambiguity. The G-compensator is stopped at τ , i.e., ΛGt = ΛGt∧τ . Hence, λGt = 0 on {t > τ }.

The following results give the G-intensity of τ in terms of F-density, and conversely the F-density
αt (θ) in terms of the G-intensity, but only for θ ≥ t .

Proposition 4.4. (1) The random time τ admits a (G, η)-intensity given by

λGt = 1{τ>t}λ
F
t = 1{τ>t}

αt (t)

St
, P− a.s. (14)

The process (NGt := 1{τ≤t} −
∫ t

0 λ
G
s η(ds), t ≥ 0) is a G-martingale, and (LGt := 1{τ>t}

e
∫ t

0 λ
G
s η(ds), t ≥ 0) is a G-local martingale.

(2) For any θ ≥ t , we have αt (θ) = E[λGθ |Ft ] on the set {t < ζF}.
Furthermore, the F-optional projections of the martingale NG and of the local martingale
LG are the F-martingale −MF and the F-local martingale LF.

Proof. (1) The G-local martingale property of NG is equivalent to the G-local martingale
property of LGt = 1{τ>t}e

∫ t
0 λ
G
s η(ds)

= 1{τ>t}e
∫ t

0 λ
F
s η(ds), since

dLGt = −LGt−d1{τ≤t} + 1{τ>t}e
∫ t

0 λ
F
s η(ds)λFt η(dt) = −LGt−dNGt .

The process
∫ t

0 λ
F
s η(ds) is continuous, so we can proceed by localization, introducing the

G-stopping times τn = τ1{τ≤Tn} +∞1{τ>Tn} where Tn = inf{t :
∫ t

0 λ
F
s η(ds) > n}. Then,

the local martingale property of the stopped process LG,nt := LGt∧τ n follows from the F-local

martingale property of LFt∧T n = LF,nt , since for any s ≤ t ,

E[LG,nt |Gs] = E[1{τ>t∧T n}e
∫ t∧T n

0 λFuη(du)
|Gs]

= 1{τ>s∧T n}

E[1{τ>t∧T n}e
∫ t∧T n

0 λFuη(du)
|Fs]

Ss

= 1{τ>s∧T n}

E[St∧T n e
∫ t∧T n

0 λFuη(du)
|Fs]

Ss
= 1{τ>s∧T n}

LF,ns

Ss

where the second equality comes from Theorem 3.1 and the last equality follows from the
F-local martingale property of LF,n .
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Then, the form of the intensities follows from the definition. Since the bounded super-
martingale 1{τ≤t} is obviously of class (D), the compensated local martingale NG is a
uniformly integrable martingale.

(2) By the martingale property of density, for any θ ≥ t , αt (θ) = E[αθ (θ)|Ft ]. Using the
definition of S, and the value of λG given in (1), we obtain

αt (θ) = E
[
αθ (θ)

1{τ>θ}
Sθ

∣∣∣∣Ft

]
= E[λGθ |Ft ], on {t < ζF}, a.s.

Hence, the value of the density can be partially deduced from the intensity.

The F-projection of the local martingale LGt = 1{τ>t}e
∫ t

0 λ
G
s η(ds) is the local martingale

St e
∫ t

0 λ
F
s η(ds)

= LFt by definition of the survival process S. Similarly, since αt (θ) = E[λGθ |Ft ],
the F-projection of the martingale NGt = 1{τ≤t} −

∫ t
0 λ
G
s η(ds) is 1− St −

∫ t
0 αs(s)η(ds) =

−MFt . �

Remarks 4.5. (1) Since the intensity process exists, τ is a totally inaccessible G-stopping time.
(2) The density hypothesis, and the fact that η is non-atomic allow us to choose αs(s)/Ss as an

intensity, instead of αs(s)/Ss− as it is usually done (see [8] in the case where the numerator
αs(s) represents the derivative of the compensator of S).

(3) Proposition 4.4 shows that the intensity λGt can be completely deduced from αt (t) since
St =

∫
∞

t αt (θ)η(dθ) =
∫
∞

t E[αθ (θ)|Ft ]η(dθ). However, given λGt , we can only obtain the
partial knowledge of αt (θ) for θ ≥ t . This is the reason why the intensity approach is not
sufficient to study what goes on after a default event (except under the immersion property),
since we observe in (10) that the other part of αt (θ) where θ < t plays an important role in
the after-default computation.

(4) Proposition 4.1 shows that density and intensity approaches correspond respectively to the
additive and the multiplicative decomposition point of view of the survival process S.

We now use the density–intensity relationship to characterize the pure jump G-martingales
having only one jump at τ . The items (2) and (3) in the following corollary can be viewed
as some representation theorems for such martingales, in an additive and a multiplicative form
respectively. Note also that (1) is a classical result for G-predictable processes (see Remark 4.5
in [13]), we here are interested in G-optional processes.

Corollary 4.6. (1) For any locally bounded G-optional process HG, the process

N H,G
t := HGτ 1{τ≤t} −

∫ t∧τ

0

αs(s)

Ss
HGs η(ds) =

∫ t

0
HGs dNGs , t ≥ 0 (15)

is a G-local martingale.
(2) Any pure jump G-martingale MG which has only one locally bounded jump at τ can be

written on the form (15), with HGτ = MGτ − MGτ− .

(3) If, in addition, MG is positive, then it satisfies dMGt /MGt− = (ut − 1)dNGt where u is a
positive F-optional process associated with the relative jump such that uτ = MGτ /MGτ−. The
martingale MG has the equivalent representation

MGt =
(
(uτ − 1)1{τ≤t} + 1

)
e−

∫ t∧τ
0 (us−1)λFs η(ds). (16)
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Proof. (1) The G-martingale property of NG implies that N H,G defined in (15) is a G-
martingale for any bounded predictable process HG (typically HGt = HGs 1]s,∞](t)). For
(1), it suffices to verify the G-martingale property for the process N H,G where HG is the
G-optional process of the form HGt = HGs 1[s,∞)(t). By comparing the two cases, we know
that this is also true since τ avoids F-stopping times.

(2) The locally bounded jump HGτ of the martingale MG at time τ is the value at time τ of some
locally bounded F-optional process HF. Then the difference MG − N H,G is a continuous
local martingale. In addition, it is also a finite variation process, and hence is a constant
process.

(3) We calculate the differential of the finite variation process MG as

dMGt = −MGt (ut − 1)λGt η(dt)+ MGt−(ut − 1)(dNGt + λ
G
t η(dt))

= MGt−(ut − 1)dNGt .

Then MG is the exponential martingale of the pure jump martingale (ut − 1)dNGt . �

4.3. An example of HJM type

We now give some examples, where we point out similarities with Heath–Jarrow–Morton
models. Here, our aim is not to present a general framework, therefore, we reduce our attention to
the case where the reference filtration F is generated by a multi-dimensional standard Brownian
motion W . The following two propositions, which model the dynamics of the conditional
probability S(θ), correspond respectively to the additive and multiplicative points of view.
From the predictable representation theorem in the Brownian filtration, applied to the family
of bounded martingales (St (θ), t ≥ 0), θ ≥ 0, there exists a family of F-predictable processes
(Z t (θ), t ≥ 0) satisfying Z t (0) = 0, ∀t ≥ 0, such that

dSt (θ) = Z t (θ)dWt , (17)

In this section, we assume “smoothness conditions” without giving details to avoid a lengthy
redaction. We refer to Musiela and Rutkowski [16, Chap. 11] for conditions which ensure that
the stochastic integrals are well defined in a HJM model and [17, p. 312] for conditions allowing
to differentiate stochastic differential equations with respect to a parameter.

Proposition 4.7. Let dSt (θ) = Z t (θ)dWt be the martingale representation of (St (θ), t ≥ 0) and
assume that the processes (Z t (θ); t ≥ 0) are differentiable in the following sense: there exists
a family of processes (zt (θ), t ≥ 0) such that Z t (θ) =

∫ θ
0 zt (u)η(du), Z t (0) = 0. Then, under

regularity conditions,

(1) the density processes have the following dynamics dαt (θ) = −zt (θ)dWt where z(θ) is
subjected to the constraint

∫
∞

0 zt (θ)η(dθ) = 0 for any t ≥ 0.
(2) The survival process S evolves as dSt = −αt (t)η(dt)+ Z t (t)dWt .
(3) With more regularity assumptions, if (∂θαt (θ))θ=t is simply denoted by ∂θαt (t), then the

process αt (t) follows:

dαt (t) = ∂θαt (t)η(dt)− zt (t)dWt .
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Proof. (1) Observe that Z(0) = 0 since S(0) = 1, hence the existence of z is related with some
smoothness conditions. Then using the stochastic Fubini theorem (Theorem IV.65 [17]), one
has

St (θ) = S0(θ)+

∫ t

0
Zu(θ)dWu = S0(θ)+

∫ θ

0
η(dv)

∫ t

0
zu(v)dWu .

So (1) follows. Using the fact that for any t ≥ 0,

1 =
∫
∞

0
αt (u)η(du) =

∫
∞

0
η(du)

(
α0(u)−

∫ t

0
zs(u)dWs

)
= 1−

∫ t

0
dWs

∫
∞

0
zs(u)η(du),

one gets
∫
∞

0 zt (u)η(du) = 0.
(2) By using Proposition 4.1 and integration by parts,

MFt = −
∫ t

0
(αt (u)− αu(u))η(du) =

∫ t

0
η(du)

∫ t

u
zs(u)dWs

=

∫ t

0
dWs

(∫ s

0
zs(u)η(du)

)
,

which implies (2).
(3) We follow the same way as for the decomposition of S, by studying the process

αt (t)−
∫ t

0
(∂θαs)(s)η(ds) = αt (0)+

∫ t

0
(∂θαt )(s)η(ds)−

∫ t

0
(∂θαs)(s)η(ds)

where the notation ∂θαt (t) is defined in 3). Using the martingale representation of αt (θ)

and integration by parts (assuming that smoothness hypothesis allows these operations), the
integral in the right-hand side is a stochastic integral,∫ t

0

(
(∂θαt )(s)− (∂θαs)(s)

)
η(ds) = −

∫ t

0
η(ds)∂θ

(∫ t

s
zu(θ)dWu

)
= −

∫ t

0
η(ds)

∫ t

s
∂θ zu(s)dWu = −

∫ t

0
dWu

∫ u

0
η(ds)∂θ zu(s)

= −

∫ t

0
dWu(zu(u)− zu(0))

The stochastic integral
∫ t

0 zu(0)dWu is the stochastic part of the martingale αt (0), and so the
property (3) holds true. �

Remark 4.8. If the density admits the dynamics of a multiplicative form instead of an additive
one, that is, if dαt (θ) = αt (θ)γt (θ)dWt , then the constraint condition in (1) of Proposition 4.7
becomes

∫
∞

0 αt (u)γt (u)η(du) = 0, as given in [5].

We now consider (St (θ), t ≥ 0) as in the classical HJM models (see [18]) where its dynamics
is given in multiplicative form. By using the forward intensity λt (θ) of τ (see Remark 2.3), the
density can then be calculated as αt (θ) = λt (θ)St (θ). It follows that the forward intensity is
non-negative. As noted in Remark 2.3, λ(θ) plays the same role as the spot forward rate in the
interest rate models.

Classically, HJM framework is studied for time smaller than maturity, i.e. t ≤ T . Here we
consider all positive pairs (t, θ).
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Proposition 4.9. We keep the notation and the assumptions in Proposition 4.7. For any t, θ ≥ 0,
let Ψt (θ) =

Zt (θ)
St (θ)

. We assume that there exists a family of processes ψ such that Ψt (θ) =∫ θ
0 ψt (u)η(du). Then

(1) St (θ) = S0(θ) exp
(∫ t

0 Ψs(θ)dWs −
1
2

∫ t
0 |Ψs(θ)|

2ds
)

;
(2) the forward intensity λ(θ) has the following dynamics:

λt (θ) = λ0(θ)−

∫ t

0
ψs(θ)dWs +

∫ t

0
ψs(θ)Ψs(θ)ds; (18)

(3) St = exp
(
−
∫ t

0 λ
F
s η(ds)+

∫ t
0 Ψs(s)dWs −

1
2

∫ t
0 |Ψs(s)|2ds

)
;

Proof. By choice of notation, (1) holds since the process St (θ) is the solution of the equation

dSt (θ)

St (θ)
= Ψt (θ)dWt , ∀ t, θ ≥ 0. (19)

(2) is the consequence of (1) and the definition of λ(θ).
(3) This representation is the multiplicative version of the additive decomposition of S in
Proposition 4.7. We recall that λFt = αt (t)S

−1
t . There are no technical difficulties because S

is continuous. �

Remarks 4.10. If Ψs(s) = 0, then St = exp(−
∫ t

0 λ
F
s η(ds)) and is decreasing. For the (H)-

hypothesis to hold, one needs that Ψs(θ) = 0 for any s ≥ θ .
When θ > t , the non-negativity property of the forward intensity is implied by the weaker

condition λt (t) ≥ 0. That is similar to the case of zero coupon bond prices. But when θ < t , an
additional assumption on the dynamics (18) is necessary. We do not characterize this condition,
we shall only provide an example (see below).

Remark 4.11. The above results are not restricted to the Brownian filtration and can be easily
extended to more general filtrations under similar representation dSt (θ) = Z t (θ)dMt where M
is a martingale which can include jumps. In this case, Proposition 4.7 can be generalized in a
similar form; for Proposition 4.9, more attention should be payed to Doléans–Dade exponential
martingales with jumps.

Example. We now give a particular example which provides a large class of non-negative for-
ward intensity processes. The non-negativity property of λ is satisfied, by (2) of Proposition 4.9,
if the two following conditions hold:

• for any θ , the processψ(θ)Ψ(θ) is non-negative, (in particular if the familyψ(θ) has constant
sign);
• for any θ , the local martingale ζt (θ) = λ0(θ)−

∫ t
0 ψs(θ)dWs is a Doléans–Dade exponential

of some martingale, i.e., if there exists a family of adapted processes b(θ) such that ζ(θ) is
the solution of

ζt (θ) = λ0(θ)+

∫ t

0
ζs(θ)bs(θ)dWs,

that is, if−
∫ t

0 ψs(θ)dWs =
∫ t

0 ζs(θ)bs(θ)dWs . Here the initial condition is a positive constant
λ0(θ). Hence, we choose

ψt (θ) = −bt (θ)ζt (θ) = −bt (θ)λ0(θ) exp
(∫ t

0
bs(θ)dWs −

1
2

∫ t

0
b2

s (θ)ds

)
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where λ0 is a positive intensity function and b(θ) is a family of F-adapted processes with
constant sign. Then,

αt (θ) = λt (θ) exp
(
−

∫ θ

0
λt (v)dv

)
,

where

λt (θ) = λ0(θ)−

∫ t

0
ψs(θ) dWs +

∫ t

0
ψs(θ)Ψs(θ) ds,

is a family of density processes.

5. Characterization of G-martingales in terms of F-martingales

In the theory of pricing and hedging, martingale properties play a very important role. In
this section, we study the martingale characterization when taking into account information of
the default occurrence. The classical question in the enlargement of filtration theory is to give
decomposition of F-martingales in terms of G-semimartingales. For the credit problems, we are
concerned with the problem in a converse sense, that is, with the links between G-martingales
and F-(local) martingales. In the literature, G-martingales which are stopped at τ have been
investigated, particularly in the credit context. For our analysis of after-default events, we are
interested in the martingales which start at the default time τ and in martingales having one jump
at τ , as the ones introduced in Corollary 4.6. The goal of this section is to present characterization
results for these types of G-martingales.

5.1. G-local martingale characterization

Any G-local martingale may be split into two local martingales, the first one stopped at time
τ and the second one starting at time τ , that is

YGt = YGt∧τ + (Y
G
t − YGτ )1{τ≤t}.

The density hypothesis allows us to provide a characterization2 of G-local martingales stopped
at time τ .

Proposition 5.1. A G-adapted càdlàg process YG is a G-local martingale stopped at time τ if
and only if there exist an F-adapted càdlàg process Y defined on [0, ζF) and a locally bounded
F-optional process Z such that YGt = Yt1{τ>t} + Zτ1{τ≤t} a.s. and that(

Ut := Yt St +

∫ t

0
Zsαs(s)η(ds), t ≥ 0

)
is an F -local martingale on [0, ζF). (20)

Moreover, if YG is a uniformly integrable G-martingale stopped at time τ , the process U is a
martingale.

Equivalently, using the multiplicative decomposition of S as St = LFt e−
∫ t

0 λ
F
s η(ds) on [0, ζF),

the condition (20) is equivalent to(
LFt

[
Yt +

∫ t

0
(Zs − Ys)λ

F
s η(ds)

]
, t ≥ 0

)
is an F-local martingale on [0, ζF). (21)

2 The following proposition was established in [3, Lemma 4.1.3] in a hazard process setting.
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Proof. Assume that YG is a G-local martingale. The conditional expectation of YGt given Ft

is the F-local martingale YF defined on [0, ζF) as YFt = E[YGt |Ft ] = Yt St +
∫ t

0 Zsαt (s)η(ds)
where the last equality is obtained by using the Ft -density of τ . From the definition of U , one
has YFt − Ut =

∫ t
0 Zs(αt (s) − αs(s))η(ds). Using the fact that Z is locally bounded and that

(αt (s), t ≥ 0) is an F-martingale, it is easy to check that YF −U is an F-local martingale, hence
U is also an F-local martingale. Moreover, if YG is uniformly integrable, E[|YGϑ |] <∞ for any
F-stopping time ϑ , and the quantity Yϑ1{τ>ϑ} is integrable. Hence Yϑ Sϑ is also integrable, and

E

[∫ ζF

0
|Zs |αs(s)η(ds)

]
= E[|YGτ |] <∞,

which establishes that U is a martingale. The local martingale case follows by localization.
Conversely, for any F-adapted process Z and any t > s,

E[Zτ1τ≤t |Gs] = Zτ1{τ≤s} + 1{s<τ }
1
Ss

E
[∫ t

s
Zuαu(u)η(du)|Fs

]
.

Then using Theorem 3.1 and the fact that U is an F-local martingale, we obtain that E[YGt |Gs] =

YGs a.s., hence YG is a G-local martingale.

The second formulation is based on the multiplicative representation (13), St = LFt e−ΛFt

where ΛFt =
∫ t

0 λ
F
s η(ds) is a continuous increasing process. Hence

d(Yt LFt ) = d(Yt St eΛ
F
t ) = eΛ

F
t d(Yt St )+ eΛ

F
t Yt Stλ

F
t η(dt)

= eΛ
F
t dUt + (Yt − Z t )λ

F
t LFt η(dt),

where the last equality follows from (14) that αt (t) = λFt St . The local-martingale property of the
process U is then equivalent to that of (Yt LFt −

∫ t
0 (Ys − Zs)λ

F
s LFs η(ds), t ≥ 0), and then to the

condition (21). �

Corollary 5.2. A G-martingale stopped at time τ and equal to 1 on [0, τ ) is constant on [0, τ ].

Proof. The integration by parts formula proves that (LFt
∫ t

0 (1 − Zs)λ
F
s η(ds), t ≥ 0) is a local

martingale if and only if the continuous bounded variation process (
∫ t

0 LFs (1− Zs)λ
F
s η(ds), t ≥

0) is a local martingale, that is, if LFs (1− Zs)λ
F
s = 0, which implies that Zs = 1 on [0, ζF). �

The before-default G-martingale Y bd,G can always be separated into two parts: a martingale
which is stopped at τ and is continuous at τ , and a martingale which has a jump at τ .

Corollary 5.3. Let Y bd,G be a G-local martingale stopped at τ of the form Y bd,G
t = Yt1{τ>t} +

Zτ1{τ≤t}. Then there exist two G-local martingales Y c,bd and Y d,bd such that Y bd,G
= Y c,bd

+

Y d,bd, which satisfy the following conditions:

(1) (Y d,bd
t = (Zτ − Yτ )1{τ≤t} −

∫ t∧τ
0 (Zs − Ys)λ

F
s η(ds), t ≥ 0) is a G-local martingale with a

single jump at τ ;

(2) (Y c,bd
t = Ỹτ∧t , t ≥ 0) is a G-local martingale continuous at τ , where Ỹt = Yt +

∫ t
0 (Zs −

Ys)λ
F
s η(ds) and (LFt Ỹt , t ≥ 0) is an F-local martingale.

Proof. From Corollary 4.6, Y d,bd is a local martingale. The result follows. �



1026 N. El Karoui et al. / Stochastic Processes and their Applications 120 (2010) 1011–1032

Corollary 5.4. Under the immersion property, a process YG stopped at τ and continuous at time
τ is a G-local martingale if and only if Y is an F-local martingale. In other words, any G-local
martingale stopped at time τ and continuous at τ is an F-local martingale stopped at τ .

We now concentrate on the G-local martingales starting at τ , which, as we can see below, are
easier to characterize.

Proposition 5.5. Any càdlàg integrable process YG is a G-martingale starting at τ with Yτ = 0
if and only if there exists an O(F) ⊗ B(R+)-process (Yt (.), t ≥ 0) such that Yt (t) = 0 and
YGt = Yt (τ )1{τ≤t} and that, for any θ > 0, (Yt (θ)αt (θ), t ≥ θ) is an F-martingale on
[θ, ζ θ ), where ζ θ is defined as in Section 4.1. The same result follows for local martingales
by localization.

Proof. From Theorem 3.1, for any t > s ≥ 0, one has

E(Yt (τ )1{τ≤t}|Gs)

= 1{s<τ }
1
Ss

E
(∫
∞

s
1u≤t Yt (u)αt (u)η(du)|Fs

)
+1{τ≤s}

1
αs(τ )

(E(Yt (θ)αt (θ)|Fs)|θ=τ )

= 1{s<τ }
1
Ss

E
(∫ t

s
Yt (u)αt (u)η(du)|Fs

)
+ 1{τ≤s}

1
αs(τ )

(E(Yt (θ)αt (θ)|Fs)|θ=τ ) .(22)

Assume that YGt = Yt (τ )1{τ≤t} is a G-martingale starting at τ with Yτ = 0, so that Yt (t) = 0.
Then, E(Yt (τ )1{τ≤t}|Gs) = Ys(τ )1{τ≤s} and (22) implies that

E(Yt (θ)αt (θ)|Fs) = Ys(θ)αs(θ) for t > s > θ.

It follows that (Yt (θ)αt (θ), t ≥ θ) is a martingale.
Conversely, using the fact that (Yt (θ)αt (θ), t ≥ θ) is an F-martingale, and that Yt (t) = 0, (22)
leads to

E(Yt (τ )1{τ≤t}|Gs) = 1{s<τ }
1
Ss

∫ t

s
E(Yt (u)αt (u)|Fs)η(du)+ 1{τ≤s}Ys(τ )

= 1{s<τ }
1
Ss

∫ t

s
E(Yt (u)αt (u)|Fu |Fs)η(du)+ 1{τ≤s}Ys(τ )

= 1{τ≤s}Ys(τ ).

So YG is a G-martingale. �

Combining Propositions 5.1 and 5.5, we give the characterization of a general G-martingale.

Proposition 5.6. A càdlàg process YG is a G-local martingale if and only if there exist an
F-adapted càdlàg process Y and an O(F) ⊗ B(R+)-optional process Yt (.) such that YGt =
Yt1{τ>t} + Yt (τ )1{τ≤t} and

(1) the process (Yt St +
∫ t

0 Ys(s)αs(s)η(ds), t ≥ 0) or equivalently (LFt [Yt +
∫ t

0 (Ys(s)− Ys)λ
F
s

η(ds)], t ≥ 0) is an F-local martingale;
(2) for any θ > 0, (Yt (θ)αt (θ), t ≥ θ) is an F-local martingale on [θ, ζ θ ).
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Proof. Notice that Y ad,G
t = (Yt (τ ) − Yτ (τ ))1{τ≤t}. Then the theorem follows directly by

applying Propositions 5.1 and 5.5 on Y bd,G and Y ad,G respectively. �

The above proposition allows for the following result. However, the converse is not always
true except under some extra conditions.

Theorem 5.7. Let (Yt (θ), t ≥ θ) be a family of non-negative processes such that

(1) (Yt (θ)αt (θ), t ≥ θ) is an F-martingale on [θ, ζ θ ),
(2)

∫
∞

0 Ys(s)αs(s)η(ds) <∞,

and define Y as Yt St = E[
∫
∞

t Ys(s)αs(s)η(ds)|Ft ]. Then the process YGt = Yt1{t<τ } + Yt (τ )

1{t≥τ } is a G-martingale.

Proof. From Proposition 5.6, the process YG is a positive G-local martingale, hence a super-
martingale. Since E[YGt ] = E[

∫
∞

0 Ys(s)αs(s)η(ds)] is constant, the process YG is a martingale.
�

In order to obtain the converse, one needs to add condition so that the martingale property
of Yt St +

∫ t
0 Ys(s)αs(s)η(ds) implies that Yt St = E[

∫
∞

t Ys(s)αs(s)η(ds)|Ft ], mainly some
uniformly integrable conditions. Notice that if Yt (t)St = E[

∫
∞

t Ys(s)αs(s)η(ds)|Ft ], then YG

has no jump at τ .

Remark 5.8. We observe again the fact that to characterize what goes on before the default, it
suffices to know the survival process S or the intensity λF. However, for the after-default studies,
we need the whole conditional distribution of τ , i.e., αt (θ) where θ ≤ t .

5.2. Decomposition of F-(local) martingale

An important result in the enlargement of filtration theory is the decomposition of F-(local)
martingales as G-semimartingales. Using the above results, we provide an alternative proof for a
result established in [12], simplified by using the fact that any F-martingale is continuous at time
τ . Our method is interesting, since it gives the intuition of the decomposition without using any
result on enlargement of filtrations.

Proposition 5.9. Any F-martingale YF is a G-semimartingale which can be written as YFt =

MY,G
t + AY,G

t where MY,G is a G-martingale and (AY,G
t := At1{τ>t} + At (τ )1{τ≤t}, t ≥ 0) is

an G-optional process with finite variation. Moreover

At =

∫ t

0

d[YF, S]s
Ss

and At (θ) =

∫ t

θ

d[YF, α(θ)]s
αs(θ)

+ Aθ (23)

where [ , ] denotes the co-variation process.

Remark 5.10. Note that our decomposition differs from the usual one, since our process A is
optional (and not predictable) and that we are using the co-variation process, instead of the
predictable co-variation process. As a consequence our decomposition is not unique.

Proof. On the one hand, assuming that YF is a G-semimartingale, it can be decomposed as the
sum of a G-(local)martingale and a G-optional process AY,G with finite variation which can be
written as At1{τ>t} + At (τ )1{τ≤t} where A and A(θ) are still unknown. Note that, since YF has
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no jump at τ (indeed, τ avoids F-stopping times — see Corollary 2.2), we can choose MY,G such
that MY,G and hence AY,G have no jump at τ . Applying the martingale characterization result
obtained in Proposition 5.6 to the G-local martingale

YFt − AY,G
t = (YFt − At )1{τ>t} + (Y

F
t − At (τ ))1{τ≤t}

leads to the fact that the two processes

((YFt − At )L
F
t , t ≥ 0) and (αt (θ)(Y

F
t − At (θ)), t ≥ θ)

are F-(local) martingales. Since

d
(
(YFt − At )L

F
t

)
= (YFt− − At−)dLFt + LFt−d(YFt − At )+ d〈YF, LF〉ct

+∆(YFt − At )∆LFt

and

−LFt−dAt −∆At∆LFt = −LFt dAt ,

one has

d
(
(YFt − At )L

F
t

)
= (YFt− − At−)dLFt + LFt−dYFt + d[YF, LF]t − LFt dAt .

Based on the intuition given by the Girsanov theorem and on the fact that YF and LF are
F-local martingales, we find that a natural candidate for the finite variation processes A is
d At = d[YF, LF]t/LFt . Since LF is the product of S and a continuous increasing process eΛ

F
,

we have d[YF, LF]t/LFt = d[YF, S]t/St and A satisfies the first equality in (23). Similarly, a
natural candidate for the family A(θ) is d At (θ) = d[YF, α(θ)]t/αt (θ), so that A(θ) satisfies the
second equality in (23).

On the other hand, Proposition 5.6 implies that YF − AY,G is a G-local martingale. It follows
that YF is indeed a G-semimartingale. �

6. Change of probabilities

Change of probability measure is a key tool in derivative pricing as in martingale theory. In
credit risk framework, we are also able to calculate parameters of the conditional distribution
of the default time w.r.t. a new probability measure. The links between change of probability
measure and the initial enlargement of filtrations have been established, in particular, in [11,10,1].
In statistics, it is motivated by the Bayesian approach [9].

6.1. Girsanov theorem

We present a general Girsanov type result. As in Theorem 5.7, we consider a positive G-
martingale and we shall add some normalization coefficient so that it is a martingale with
expectation 1. The Radon–Nikodým density is given in an additive form instead of in a
multiplicative one as in the classical literature, which makes the density of τ have a simple
form under the new probability measure.

Theorem 6.1 (Girsanov’s Theorem). Let (Ω , (Ft )t≥0,P) be a probability space and (αt (θ), t ≥
0), θ ≥ 0 be a family of density processes. Let (βt (θ), t ≥ θ) be a family of càdlàg strictly
positive martingales and define βt (θ) = E[βθ (θ)|Ft ] for any t < θ , Mβ

t :=
∫
∞

0 βt (θ)η(dθ) and

assume E[Mβ
t ] <∞, (so that

∫
∞

0 βt (θ)/Mβ
t η(dθ) = 1).
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Let qt (θ) := (βt (θ)/αt (θ), t ≥ θ) and define (qt , t ≥ 0) by qt St = E
[∫
∞

t qu(u)αu(u)
η(du)|Ft

]
.

In particular, q0 = E[
∫
∞

0 qu(u)αu(u)η(du)] = Mβ

0 . Let

QGt :=
qt

Mβ

0

1{τ>t} +
qt (τ )

Mβ

0

1{τ≤t}.

(1) Then QG is a positive (G,P)-martingale with expectation equal to 1, which defines a
probability measure Q on (Ω ,A,G) equivalent to P and

α
Q
t (θ) =

βt (θ)

Mβ
t

, t ≥ 0, θ ≥ 0 (24)

is the (F,Q)-density process of τ . The restriction of Q to F admits the Radon–Nikodým

density QFt = E[QGt |Ft ] =
Mβ

t

Mβ
0

.

(2) (a) The Q-conditional survival process is defined on [0, ζF) by

SQt = St
qt

Mβ
t

=
E[
∫
∞

t βu(u)η(du)|Ft ]

Mβ
t

,

and is null after ζF;
(2) (b) the (F,Q)-intensity process is λF,Qt = λFt

qt (t)
qt
, η(dt)-a.s.

Proof. By construction, the process QG verifies the conditions in Theorem 5.7, then it is a
positive (G,P)-martingale with expectation equal to 1. So it can be taken as the Radon–Nikodým
density of a new probability measure Q with respect to P on Gt , i.e. dQ = QGt dP. For any positive
function h,

EQ[h(τ )|Ft ] =
1

QFt
E[QGτ h(τ )|Ft ] =

1

Mβ
t

(H1
t + H2

t )

where

H1
t = E[1{τ>t}h(τ )qτ (τ )|Ft ] = E

[∫
∞

t
h(u)qu(u)αu(u)η(du)|Ft

]
,

H2
t = E[1{τ≤t}h(τ )qt (τ )|Ft ] =

∫ t

0
h(u)qt (u)αt (u)η(du).

Since βt (u) = E[qu(u)αu(u)|Ft ] for u ≥ t , one has H1
t + H2

t =
∫
∞

0 h(u)βt (u)η(du). Conse-

quently, the process βt (u)

Mβ
t
=: α

Q
t (u) is a Q-martingale density of τ . By construction, SQt =

St qt

Mβ
t

and the new intensity is λF,Qt =
α
Q
t (t)

SQt
=

βt (t)
St qt
= λFt

qt (t)
qt

. �

Corollary 6.2. The Radon–Nikodým density of any change of probability can be decomposed
as QGt = Q1

t Q2
t where Q1 is a pure jump G-martingale with a single jump at τ and Q2 is a

G-martingale continuous at τ . Hence dQ = QGt dP = Q2
t dQ1 on Gt where dQ1

= Q1
t dP. The

change of probability Q1 affects only the intensity and the intensity of τ is the same under Q1

and Q. If in addition the immersion property holds under P, then Q1
|F = P|F.
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Proof. Let u be an F-optional process associated with the jump of QG such that uτ =
qτ (τ )
qτ−

, and

define Q1 by (16) in the multiplicative form Q1
t =

(
(uτ − 1)1{τ≤t} + 1

)
e−

∫ t∧τ
0 (us−1)λF,Ps η(ds).

Then Q1 is a pure jump martingale with the same jump as QG at τ and is of expectation

1. Under the probability Q1, the intensity is λF,Q
1

t = λ
F,P
t

qt (t)
qt

by Theorem 6.1. The G-

martingale Q2 is continuous at τ and the intensity under Q1 is hence preserved under the

probability Q, i.e. λF,Q
1

t = λ
F,Q
t . If the immersion property holds under P, one can verify that

Q1,F
t = E[Q1

t |Ft ] = 1. Hence Q1
|F = P|F. �

6.2. Applications

6.2.1. Immersion property
It is known, from [10], that under density hypothesis, there exists at least a change of

probability, such that the immersion property holds under this change of probability. Theorem 6.1
provides a full characterization of such changes of probability.

Proposition 6.3. We keep the notation of Theorem 6.1. The immersion property holds true under
Q if and only if

qt (θ) =
1

αt (θ)

βθ (θ)

Mβ
θ

Mβ
t , t ≥ θ. (25)

(1) In particular, if Q0 is the probability measure such that qt (θ) =
Mβ

t
αt (θ)

(and qt = Mβ
t ), then

the random variable τ is independent of F under Q0.
(2) In addition, Q is a probability measure under which the immersion property holds and the

intensity process does not change if and only if (25) holds and q LF is a uniformly integrable
F-martingale.

Proof. The immersion property holds true under Q if and only if αQt (θ) = α
Q
θ (θ) for any t ≥ θ .

By (24), this is equivalent to that βt (θ)

Mβ
t

remains constant, i.e., βt (θ)

Mβ
t
=

βθ (θ)

Mβ
θ

, which is exactly (25).

The particular case (1) holds true with βt (θ)

Mβ
t
= 1. In addition, αQt (θ) equals constant 1, which

means that τ is independent of F under Q0.
(2) If λF,Qt = λFt , then qt (t) = q(t). Since QG is a G-martingale, we know that q LF is

an F-martingale by Proposition 5.1. For the reverse, if q LF = q SeΛ where Λt =
∫ t

0 λ
F
s η(ds)

is an F-martingale, by a similar argument as in the proof of Proposition 4.1, one can verify
that (qt St +

∫ t
0 qs Ssλ

F
s η(ds), t ≥ 0) is an F-martingale. On the other hand, by definition,

(qt St +
∫ t

0 βs(s)η(ds), t ≥ 0) is an F-martingale. By the uniqueness of the decomposition of
the supermartingale q S, we obtain βs(s) = qs Ssλ

F
s , η(ds)-a.s., so qs(s) = qs . �

It is well known, from Kusuoka [14], that the immersion property is not stable by a change
of probability measure. In the following, we shall characterize, under the density hypothesis,
changes of probability which preserve this immersion property, that is, H-hypothesis is satisfied
under both P and Q. (See also [6] for a different study of changes of probabilities preserving the
immersion property.)
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Corollary 6.4. We keep the notation of Theorem 6.1. Assume in addition that the immersion
property holds under P. The only changes of probability measure which preserve the immersion
property have Radon–Nikodým densities that are the product of a pure jump positive martingale
with only one jump at time τ , and a positive F-martingale.

Proof. Let the Radon–Nikodým density (QGt , t ≥ 0) be a pure jump martingale with only
one jump at time τ . Then the immersion property still holds under Q. So we can restrict our
attention to the case when in the both universes the intensity processes are the same. Then the
Radon–Nikodým density is continuous at time τ and the processes (qt , t ≥ 0) and (qt (θ), t ≥ θ)
are F-(local) martingales.

Assume now that the immersion property holds also under the new probability measure Q.
Both martingales LF,P and LF,Q are constant, and QFt = qt . Moreover the Q-density process
being constant after the default, i.e. when θ < t , qt (θ)/qt = qθ (θ)/qθ = 1, a.s. The processes
QG, QF and q are indistinguishable. �

6.2.2. Probability measures that coincide on Gτ
We finally study changes of probability which preserve the information before the default,

and give the impact of a change of probability after the default.
As shown in this paper, the knowledge of the intensity does not allow to give full information

on the conditional law of the default, except if the immersion property holds. Starting with a
model under which the immersion property holds, taking qt (t) = qt in Theorem 6.1 will lead
us to a model where the default time admits the same intensity whereas the immersion property
does not hold, and then the impact of the default changes the dynamics of the default-free assets.

We shall present a specific case where, under the two probability measures, the dynamics of
these assets are the same before the default but are changed after the default, a phenomenon that
is observed in the actual crisis. We impose that the new probability Q coincide with P on the
σ -algebra Gτ . In particular, if m is an (F,P)-martingale, the process (mt∧τ , t ≥ 0) will be an
((Gt∧τ )t≥0,Q)-martingale (but not necessarily an (G,Q)-martingale).

Proposition 6.5. Let (qt (θ), t ≥ θ) be a family of positive (F,P)-martingales such that qθ (θ) =
1 and let Q be the probability measure with Radon–Nikodým density equal to the (G,P)-
martingale

QGt = 1{τ>t} + qt (τ )1{τ≤t} . (26)

Then, Q and P coincide on Gτ and the P and Q intensities of τ are the same.
Furthermore, if SQ is the Q-survival process, the processes (St/SQt , t ≥ 0) and the family

(α
Q
t (θ) St/SQt , t ≥ θ) are (F,P)-martingales.

Proof. The first part is a direct consequence of Theorem 6.1. It remains to note that St/SQt = Mβ
t

and αQt (θ)St/SQt = βt (θ). �

7. Conclusion

Our study relies on the impact of information related to the default time on the market.
Starting from a default-free model, where some assets are traded with the knowledge of a

reference filtration F, we consider the case where the participants of the market take into account
the possibility of a default in view of trading default-sensitive asset. If we are only concerned by
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what happens up to the default time, the natural assumption is to assume the immersion property
with a stochastic intensity process adapted to the default-free market evolution.

The final step is to anticipate that the default should have a large impact on the market, as now
after the crisis. In particular, with the nonconstant “after-default” density, we express how the
default-free market is modified after the default. In addition, hedging strategies of default-free
contingent claims are not the same in the both universes.

In a following paper [7], we shall apply this methodology to several default times, making this
tool powerful for correlation of defaults. In another paper, we shall provide explicit examples of
density processes, and give some general construction of these processes.
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