
The Alpha-Heston Stochastic Volatility Model

Ying Jiao ∗ Chunhua Ma † Simone Scotti ‡ Chao Zhou §

February 26, 2019

Abstract

We introduce an affine extension of the Heston model where the instantaneous variance

process contains a jump part driven by α-stable processes with α ∈ (1, 2]. In this framework,

we examine the implied volatility and its asymptotic behaviors for both asset and variance

options. In particular, we show that the behavior of stock implied volatility is the sharpest

coherent with theoretical bounds at extreme strikes independently of the value of α ∈ (1, 2).

As far as variance options are concerned, VIX2-implied volatility is characterized by an

upward-sloping behavior and the slope is growing when α decreases.

Furthermore, we examine the jump clustering phenomenon observed on the variance mar-

ket and provide a jump cluster decomposition which allows to analyse the cluster processes.

The variance process could be split into a basis process, without large jumps, and a sum of

jump cluster processes, giving explicit equations for both terms. We show that each cluster

process is induced by a first “mother” jump giving birth to a sequence of “child jumps”. We

first obtain a closed form for the total number of clusters in a given period. Moreover each

cluster process satisfies the same α-CIR evolution of the variance process excluding the long

term mean coefficient that takes the value 0. We show that each cluster process reaches 0 in

finite time and we exhibit a closed form for its expected life time. We study the dependence

of the number and the duration of clusters as function of the parameter α and the threshold

used to split large and small jumps.
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1 Introduction

The stochastic volatility models have been widely studied in literature and one important ap-

proach consists of the Heston model [29] and its extensions. In the standard Heston model, the

instantaneous variance is a square-root mean-reverting CIR (Cox-Ingersoll-Ross [11]) process.
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On one hand, compared to the Black-Scholes framework, Heston model has the advantage to

reproduce some stylized facts in equity and foreign exchange option markets. The model pro-

vides analytical tractability of pricing formulas which allows for efficient calibrations. On the

other hand, the limitation of Heston model has also been carefully examined. For example, it

is unable to produce extreme paths of volatility during the crisis periods, even with very high

volatility of volatility (vol-vol) parameter. In addition, the Feller condition, which is assumed in

Heston model to ensure that the volatility remains strictly positive, is often violated in practice,

see e.g. Da Fonseca and Grasselli [12].

To provide more consistent results with empirical studies, a natural extension is to consider

jumps in the stochastic volatility models. In the Heston framework, Bates [6] adds jumps in the

dynamics of the asset, while Sepp [44] includes jumps in both asset returns and the variance, both

papers using Poisson processes. In Barndorff-Nielsen and Shephard [5], the volatility process is

the superposition of a family of positive non-Gaussian Ornstein-Uhlenbeck processes. Nicolato

et al. [42] study the case where a jump term is added to the instantaneous variance process

which depends on an increasing and driftless Lévy process, and they analyze the impact of

jump diffusions on the realized variance smile and the implied volatility of VIX options. More

generally, Duffie et al. [14] [15] propose the affine jump-diffusion framework for the asset and

stochastic variance processes. There are also other extensions of Heston model. Grasselli [24]

combines standard Heston model with the so-called 3/2 model where the volatility is the inverse

of the Heston one. Kallsen et al [34] consider the case where stock evolution includes a time-

change Lévy process. In the framework of rough volatility models (see for example El Euch et

al. [18] and Gatheral et al. [22]), El Euch and Rosenbaum [17] propose the rough Heston model

where the square volatility process satisfies a convolution equation with a kernel proportional

to tH−1/2 with H < 1/2. In this model the characteristic function can be found by using a

fractional Ricatti equation, see also Abi Jaber et al [1].

In this paper, we introduce an extension of Heston model, called the α-Heston model, by

adding a self-exciting jump structure in the instantaneous variance. On financial markets, the

CBOE’s Volatility Index (VIX) has been introduced as a measure of market volatility of S&P500

index. Starting from 2004, this index is exchanged via the VIX futures, and its derivatives have

been developed quickly in the last decade. Figure 1 presents the daily closure values of VIX

index from January 2004 to July 2017. The historical data shows clearly that the VIX can

have very large variations and jumps, particularly during the periods of crisis and partially due

to the lack of “storage”. Moreover the jumps occur frequently in clusters. We note several

significant jump clusters, the first one associated to the subprime crisis during 2008-2010, the

second associated to the sovereign crisis of Greece during 2010-2012, and the last one to the

Brexit event around 2016-2017. Between the jump clusters, the VIX values drop to relatively

low levels during normal periods. One way to model the cluster effect in finance is to adopt

the Hawkes processes [27] where it needs to specify the jump process together with its intensity.

So the inconvenience is that the dimension of the concerned stochastic processes is increased.

For the volatility data, El Euch et al. [18] emphasize that the market is highly endogenous and

justify the use of nearly unstable Hawkes processes in their framework. Furthermore, Jaisson

and Rosenbaum [31] prove that nearly unstable Hawkes processes converge to a CIR process

after suitable rescaling. Therefore it is natural to reconcile the Heston framework with a suitable

jump structure in order to describe the jump clusters.
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Figure 1: The CBOE’s VIX value from January 2004 to July 2017.
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Compared to the standard Heston model, the α-Heston model includes an α-root term and a

compensated α-stable Lévy process in the stochastic differential equations (SDE) of the instan-

taneous variance process V = (Vt, t ≥ 0). The number of extra parameters is sparing and the

only main parameter α determines the jump behavior. This model allows to describe the cluster

effect in a parsimonious and coherent way. We adopt a related approach of continuous-state

branching processes with immigration (CBI processes). With the general integral characteriza-

tion for SDE in Dawson and Li [13], V can be seen as a marked Hawkes process with infinite

activity influenced by a Brownian noise (see Jiao et al. [32]), which is suitable to model the

self-exciting jump property. In this model, the α-stable jump process is leptokurtotic and heavy-

tailed. The parameter α corresponds to the Blumenthal-Getoor index. Hence it’s able to seize

both large and small fluctuations and even extreme high peaks during the crisis period. In addi-

tion, the law of jumps follows the Pareto distribution. Empirical regularities in economics and

finance often suggest the form of Pareto law: Liu et al. [39] found that the realized volatility

matches with a power law tail; more recently, Avellaneda and Papanicolaou [2] showed that

the right-tail distribution of VIX time series can be fitted to a Pareto law. We note moreover

that the same Feller condition applies as in the standard Heston case and this condition is more

easily respected by the α-Heston model since the behavior of small jumps with infinite activity

is similar to a Brownian motion so that the jump part allows to reduce the vol-vol parameter.

Thanks to the link between CBI and affine processes established by Filipović [20], our model

belongs to the class of affine jump-diffusion models in Duffie et al. [14], [15] and the general result

on the characteristic functions holds for the α-Heston jump structure. However, the associated

generalized Riccati operator is not analytic, which breaks down certain arguments borrowed from

complex analysis. One important point is that although theoretical results on generalized Riccati

operators are established for general affine models, in many explicit examples, the generalized

Riccati equation which is associated to the state-dependent variable of V is quadratic. The

α-Heston model allows to add more flexibility to the cumulant generator function since its
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generalized Riccati operator contains a supplementary α-power term. We examine the moment

explosion behaviors of both asset and variance processes following Keller-Ressel [35]. We are also

interested in the implied volatility surface and its asymptotic behaviors based on the model-free

result of Lee [36]. For the asset options, we show that the wing behaviors of the volatility smile

at extreme strikes are the sharpest. For the variance options, we first estimate the asymptotic

property of tail probability of the variance process. Then by examining the different behaviors

of left and right wings respectively, we see that the volatility surface at extreme strikes of VIX2

options is characterized by an upward-sloping smile, as suggested by literature. In particular,

we can remark that the slope increases as far as the parameter α decreases.

One of the most interesting features of the α-Heston model is that by using the CBI char-

acteristics as in Li and Ma [38], we can thoroughly analyse the jump cluster effect. Inspired

by Duquesne and Labbe [16], we provide a decomposition formula for the variance process V

which contains a fundamental part together with a sequence of jump cluster processes. This

decomposition implies a branching structure in the sense that each cluster process is induced by

a “mother jump” which is followed by “child jumps”. The mother jump represents a triggering

shock on the market and is driven by exogenous news in general whereas the child jumps may

reflect certain contagious effect. We obtain a closed form for the total number of clusters in a

given period. Moreover each cluster process satisfies the same α-CIR evolution of the variance

process excluding the long term mean coefficient that takes the value 0. We show that each clus-

ter process reaches 0 in finite time and we exhibit a closed form for its expected duration. We

study the dependence of the number and the duration of clusters as function of the parameter

α and the threshold used to split large and small jumps.

The rest of the paper is organized as follows. We present the model framework in Section

2. Section 3 is devoted to the affine characterization of the model and related properties. In

Section 4, we study the asymptotic implied volatility behavior of asset and variance options.

Section 5 deals with the analysis of jump clusters. We conclude the paper by providing the

proofs in Appendix.

2 Model framework

Let us fix a probability space (Ω,A,Q) equipped with a filtration F = (Ft)t≥0 which satisfies

the usual conditions. We first present a family of stochastic volatility models by using a general

integral representation of SDEs with random fields. Consider the asset price process S = (St, t ≥
0) given by

dSt
St

= rdt+

∫ Vt

0
B(dt, du), S0 > 0 (1)

where r ∈ R+ is the constant interest rate, B(ds, du) is a white noise on R2
+ with intensity dsdu,

and the process V = (Vt, t ≥ 0) is given by

Vt = V0 +

∫ t

0
a(b− Vs)ds+ σ

∫ t

0

∫ Vs

0
W (ds, du) + σN

∫ t

0

∫ Vs−

0

∫
R+

ζÑ(ds, du, dζ) (2)

where a, b, σ, σN ∈ R+, W (ds, du) is a white noise on R2
+ correlated to B(ds, du) such that

B(ds, du) = ρW (ds, du) +
√

1− ρ2W (ds, du) with W (ds, du) being an independent white noise
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and ρ ∈ (−1, 1), Ñ(ds, du, dζ) is an independent compensated Poisson random measure on

R3
+ with intensity dsduν(dζ) with ν(dζ) being a Lévy measure on R+ and satisfying

∫∞
0 (ζ ∧

ζ2)ν(dζ) <∞. The measure Q stands for the risk-neutral probability measure. We shall discuss

in more detail the change of probability in Section 3.1.

The variance process V defined above is a CBI process (c.f. Dawson and Li [13, Theorem

3.1]) with the branching mechanism given by

Ψ(q) = aq +
1

2
σ2q2 +

∫ ∞
0

(e−qσN ζ − 1 + qσNζ)ν(dζ) (3)

and the immigration rate Φ(q) = abq. The existence and uniqueness of a strong solution of

(2) is proved in [13] and [38]. From the financial viewpoint, Filipović [20] has shown how

the CBI processes naturally enter the field of affine term structure modelling. The integral

representation provides a family of processes where the integral intervals in (2) depend on the

value of the process itself, which means that the jump frequency will increase when a jump

occurs, corresponding to the self-exciting property.

We are particularly interested in the following model, which is called the α-Heston model,

dSt
St

= rdt+
√
VtdBt (4)

dVt = a (b− Vt) dt+ σ
√
VtdWt + σN

α
√
Vt−dZt (5)

where B = (Bt, t ≥ 0) and W = (Wt, t ≥ 0) are correlated Brownian motions d 〈B,W 〉t = ρdt

and Z = (Zt, t ≥ 0) is an independent spectrally positive compensated α-stable Lévy process

with parameter α ∈ (1, 2] whose Laplace transform is given, for any q ≥ 0, by

E
[
e−qZt

]
= exp

(
− tqα

cos(πα/2)

)
.

The equation (5) corresponds to the choice of the Lévy measure

να(dζ) = −
1{ζ>0}dζ

cos(πα/2)Γ(−α)ζ1+α
, 1 < α < 2. (6)

in (2). Then the solutions of the two systems of SDEs admit the same probability law and are

equal almost surely in an expanded probability space by [37].

The α-Heston model is an extension of standard Heston model in which the jump part of the

variance process depends on an α-square root jump process. In particular, we call the process

V defined in (5) an α-CIR(a, b, σ, σN , α) process and the existence and uniqueness of the strong

solution are established in Fu and Li [21]. In this case, by (3) and (6), the variance V has the

explicit branching mechanism

Ψα(q) = aq +
σ2

2
q2 −

σαN
cos(πα/2)

qα. (7)

Compared to the standard Heston model, the parameter α characterizes the jump behavior

and the tail fatness of the instantaneous variance process V . When α is near 1, V is more

likely to have large jumps but its values between large jumps tend to be small due to deeper

negative compensations (c.f. [32]). When α is approaching 2, there will be less large jumps but
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more frequent small jumps. In the case when α = 2, the process Z reduces to an independent

Brownian motion scaled by
√

2 and the model is reduced to a standard Heston one.

The Feller condition, that is, the inequality 2ab ≥ σ2, is often assumed in the Heston model

to ensure the positivity of the process V . In the α-Heston model, the same condition remains

to be valid. More precisely, for any α ∈ (1, 2), the point 0 is an inaccessible boundary for

(4) if and only if 2ab ≥ σ2 for any σN ≥ 0 (c.f. [32, Proposition 3.4]). From the financial

point of view, this means that the jumps have no impact on the possibility for the volatility to

reach the origin, which can be explained by the fact that only positive jumps are added and

their compensators are proportional to the process itself. When α = 2, the Feller condition

becomes 2ab ≥ σ2 + 2σ2
N since Z becomes a scaled Brownian motion. Empirical studies show

that (see e.g. Da Fonseca and Grasselli [12], Graselli [24]), in practice, the Feller condition is

often violated since when performing calibrations on equity market data high vol-vol is required

to reproduce large variations. This point is often seen as a drawback of the Heston model. In

the α-Heston model, part of the vol-vol parameter is seized by the jump part. Indeed, as shown

by Asmussen and Rosinski [3], the small jumps of a Lévy process can be approximated by a

Brownian motion, so that the small jumps induced by the infinite activity of the variance process

generates a behaviour similar as that of a Brownian motion. This allows to reduce mechanically

the contribution from the Brownian part and hence the vol-vol parameter. As a consequence,

our model is more likely to preserve the Feller condition and the positivity of the volatility

process.

Figure 2 provides a simulation of the variance process V defined in (5) for a period of T = 14,

in comparison with the empirical VIX data (from 2004 to 2017) in Figure 1. The parameters

are chosen to be a = 5, b = 0.14, σ = 0.08, σZ = 1 and α = 1.26. The initial value is fixed to

be V0 = 0.03 according to the VIX data on January 2nd, 2004. Note that the Feller condition

is largely satisfied with the above choice of parameters and the values of V are always positive

in Figure 2. We also observe the cluster phenomenon for jumps and in particular some large

jumps concentrated on a short period. At the same time, the values of the variance process

V remain to be at a relatively low level between the jumps, which corresponds to the normal

periods between the crisis, similarly as shown by empirical data in Figure 1.

3 Affine characteristics

In this section, we give the joint Laplace transform of the log-price, the variance and its integrated

process according to Duffie et al. [14, 15] and Keller-Ressel [35]. We begin by discussing the

probability change between the historical and the risk-neutral pricing probability measures. We

shall also make comparisons with several other affine models in literature.

3.1 Change of probability measures

We have assumed that model dynamics (1), (2) and (4) are specified under a risk-neutral proba-

bility Q. However, it is important to establish a link with the physical or historical one generally

denoted by P in order to keep a tractable form for the evolution of the processes describing the

market. The construction of an equivalent historical probability is based on an Esscher-type
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Figure 2: Simulation of the variance process V .
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transformation in Kallsen et al. [33] which is a natural extension of the class proposed by Hes-

ton [29]. The next result shows that the general class of temperated Heston-type model is closed

under the change of probability and is a slight modification of [32, Proposition 4.1].

Proposition 3.1 Let (S, V ) be as in (1) and (2) under the probability measure Q and assume

that the filtration F is generated by the random fields (W,W ) and Ñ . Fix (η, η) ∈ R2 and θ ∈ R+,

and define

Ut := η

∫ t

0

∫ Vs

0
W (ds, du) + η

∫ t

0

∫ Vs

0
W (ds, du) +

∫ t

0

∫ Vs−

0

∫ ∞
0

(e−θζ − 1)Ñ(ds, du, dζ).

Then the Doléans-Dade exponential E(U) is a martingale and the probability measure P defined

by

dP
dQ

∣∣∣∣
Ft

= E(U)t,

is equivalent to Q. Moreover, under P, (S, V ) satisfy (1) and (2) with the parameters σP = σ,

σPN = σN ,

aP = a− ση − ασN
cos(πα/2)

θα−1, bP = ab/aP,

and the Lévy measure

νPα(dζ) = −
1{ζ>0}e

−θζ

cos(πα/2)Γ(−α)ζ1+α
dζ.

The model under P remains in the CBI class of α-Heston model and shares similar behaviors.

Note that the parameters η, η and θ are chosen such that aP ∈ R+. As a direct consequence of

the above proposition, the return rate of the price process under P becomes

µPt = r − Vt
(
ρη +

√
1− ρ2η

)
.
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The risk premiums are given by

λS(t) := µPt − r = −
(
ρη +

√
1− ρ2η

)
Vt

λV (t) := (aP − a)Vt = −
(
ση +

ασN
cos(πα/2)

θα−1

)
Vt .

When η < 0, the risk premium λV is positively correlated with the volatility process V . The

positive correlation between the risk premium and the volatility can partially explain the strongly

upward sloping in VIX smile detailed in [7].

3.2 Joint characteristic function

In the Heston model, it is well known that the characteristic function plays a crucial role for the

pricing of derivatives and the model calibration. We now provide the joint Laplace transform

of the triplet: the log-price, the variance and its integrated process. The following result is a

direct consequence of [14] and [35] and its proof is postponed to Appendix.

Proposition 3.2 Let Yt = logSt. For any ξ = (ξ1, ξ2, ξ3) ∈ iR× C2
−,

E
[

exp
(
ξ1Yt + ξ2Vt + ξ3

∫ t

0
Vsds

)]
= exp

(
ξ1Y0 + ψ(t, ξ)V0 + φ(t, ξ)

)
(8)

where φ and ψ solve the generalized Riccati equations

∂tφ(t, ξ) = F (ξ1, ψ(t, ξ), ξ3), φ(0, ξ) = 0; (9)

∂tψ(t, ξ) = R(ξ1, ψ(t, ξ), ξ3), ψ(0, ξ) = ξ2. (10)

Moreover, the functions F and R : iR× C2
− → R are defined by

F (ξ1, ξ2, ξ3) = rξ1 + abξ2, (11)

R(ξ1, ξ2, ξ3) =
1

2
(ξ2

1 − ξ1) + ρσξ1ξ2 +
1

2
σ2ξ2

2 − aξ2 −
σαN

cos(πα/2)
(−ξ2)α + ξ3. (12)

To compare the α-Heston model with other models in literature, we consider in the remaining

of the paper the usual case as in [14] and [35] where the third vaiable ξ3 is omitted and r = 0.

Recall that in the standard Heston model, the generalized Riccati operators are given by

FH(ξ1, ξ2) = abξ2, and RH(ξ1, ξ2) =
1

2
(ξ2

1 − ξ1) + ρσξ1ξ2 +
1

2
σ2ξ2

2 − aξ2. (13)

By Proposition 3.2, the α-Heston model admits

F (ξ1, ξ2) = FH(ξ1, ξ2), and R(ξ1, ξ2) = RH(ξ1, ξ2)−
σαN

cos(πα/2)
(−ξ2)α. (14)

Note that the function R in (14) is not analytic and is well defined only for ξ2 ≤ 0. The

difference R(ξ1, ξ2) − RH(ξ1, ξ2) is positive since cos(πα/2) < 0 for α ∈ (1, 2]. As stated in

[35], F characterizes the state-independent dynamic of (S, V ) while R characterizes the state-

dependent dynamic. In order to highlight the primacy of function ψ in (10), we refer R as the

main generalized Riccati operator.
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The main point we highlight is that many models discussed in literature admit similar forms

of R. In Barndorff-Nielsen and Shephard [5], R is a particular case of Heston one, i.e. σ = 0,

and the main innovation of their model is to extend in an interesting way the auxiliary operator

F . The model in Bates [6] has a more general generalized Riccati operator R but the new term

depends only on the Laplace coefficient of the stock S. So the variance process in [6] follows

the CIR diffusion and hence there is no difference for volatility and variance options compared

to Heston model. For the stochastic volatility jump model in Nicolato et al. [42], the examples

share the same Riccati operator of the Heston model. As a consequence, the Laplace transform

of the variance process has a certain form for the affine function. Then, it is not surprising that

“the specific choice of jump distribution has a minor effect on the qualitative behavior of the

skew and the term structure of the implied volatility surface” as noted in [42] (see also [41]),

since the plasticity of the model is limited to the form of the auxiliary function φ(t, ξ) which is

independent of the level of initial variance V0 in the cumulant generating function.

Our model exhibits a different behavior due to the supplementary α-power term appearing

in the main generalized Riccati operator R, which adds more flexibility to the coefficient of

the variance ψ(t, ξ) in the cumulant generating function. The reason lies in the fact that the

new jump part depends on the variance itself, resulting in a non-linear dependence in (12). In

other words, the self-exciting property of jump term introduces a completely different shape of

cumulant generating function.

4 Asymptotic behaviors and implied volatility

In this section, we focus on the implied volatility surfaces for both asset and variance options,

in particular, on their asymptotic behaviors at small or large strikes. We follow the model-free

result in the pioneering paper of Lee [36] and aim to obtain some refinements for the specific

α-Heston model. We also provide the moment explosion conditions.

4.1 Asset options

We begin by providing the following results on the generalized Riccati operator R by [35] and

give the moment explosion condition for the asset price S.

Proposition 4.1 We assume a > σρ. Define w(ξ1) such that R(ξ1, w(ξ1)) = 0 and T∗(u) :=

sup{T : E[SuT ] <∞}

(1) w(ξ1) has [0, 1] as maximal support.

(2) ∀ξ1 ∈ [0, 1] we have limt→∞ φ(t, ξ1, w) = w(ξ1).

(3) ∀ξ1 ∈ [0, 1] we have T∗(ξ1) =∞ and ∀ξ1 /∈ [0, 1] we have T∗(ξ1) = 0.

Proof: The couple (Yt, Vt) is an affine process characterized by (14) and F (u,w) := abw. Note

that F (0, 0) = R(0, 0) = R(1, 0) = 0 and χ(q1) := ∂R(q1,q2)
∂q2

∣∣
q2=0

= ρσq1 − a < ∞. Then by

Keller-Ressel [35, Corollary 2.7] we have E[ST ] < ∞ for any T > 0. Also note that χ(0) < 0

and χ(1) < 0 as a > 0, ρ < 0 and σ > 0. It follows from [35, Lemma 3.2] that there exist a
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maximal interval I and a unique function w ∈ C(I) ∩ C1(I◦) such that R(q1, w(q1)) = 0 for all

q1 ∈ I with w(0) = w(1) = 0. Since 0 = sup{q2 ≥ 0 : R(q1, q2) < ∞}, R(q1, q2) > 0 if q1 < 0

and q2 < 0, and R(q1, 0) = 1
2q1(q1 − 1), we immediately have that I = [0, 1]. Then the set

{q1 ∈ I : F (q1, w(q1)) < ∞} coincide with [0, 1]. By [35, Theorem 3.2] we have E[SqT ] = ∞ for

any q ∈ R \ [0, 1]. �

Corollary 4.2 The above proposition implies that for any T > 0, we have

sup{p > 0 : E[SpT ] <∞} = 1 and sup{p > 0 : E[S−pT ] <∞} = 0.

In other words, the maximal domain of moment generating function E[eq logST ] is [0, 1].

Let ΣS(T, k) be the implied volatility of a call option written on the asset price S with

maturity T and strike K = ek. Then combined with a model-free result of Lee [36], known as

the moment formula, it yields that the asymptotic behavior of the implied volatility at extreme

strikes is given by

lim sup
k→±∞

Σ2
S(T, k)

|k|
=

2

T
, (15)

which means that the wing behavior of implied volatility for the asset options is the sharpest

possible one by [36, Theorem 3.2 and 3.4].

In the following of this subsection, we study the probability tails of S which allows to replace

the “lim sup” by the usual limit in (15) for the left wing of the asset options. The next technical

lemma, whose proof is postponed to Appendix, shows that the extremal behavior of V is mainly

due to one large jump of the driving processes Z.

Lemma 4.3 Fix T > 0 and consider the variance process V defined by (4). Then there exists

a nonzero boundedly finite measure δ on B(D̄0[0, T ]) with δ(D̄0[0, T ]\D[0, T ]) = 0 such that, as

u→∞,

uαP(V/u ∈ ·) ŵ−→ δ(·) on B(D̄0([0, T ]), (16)

where δ is given by:

δ(·) = σαN

∫ T

0

(
b(1− e−as) + xe−as

) ∫ ∞
0

E
[
1{

wt:=e−a(t−s)y1[s,T ](t)∈ ·
}]να(dy)ds,

and να is defined by (6). We refer to Hult and Lindskog [30, page 312] for the definition of

D̄0[0, T ] and the vague convergence
ŵ−→.

Proposition 4.4 Fix t > 0. For any x ≥ 0, we have that

Px(− logSt > u) ∼ −
(σN

2a

)α ια(t)

α cos(πα/2)Γ(−α)
u−α, u→ +∞, (17)

where

ια(t) = e−αat
∫ t

0
(b(1− e−as) + xe−as)(eat − eas)αds.

10



Proof: We have by (4) that

logSt = log s0 +

∫ t

0
(r − 1

2
Vs)ds+

∫ t

0

√
VsdBs. (18)

For any t > 0, consider the asymptotic behavior of the probability tail for
∫ t

0 Vsds, that is,

Px(1
2

∫ t
0 Vsds > x). By Lemma 4.3, as u→ +∞,

uαP(V/u ∈ ·) ŵ−→ δ(·) on B(D̄0[0, t]),

Define the functional h : D̄0[0, t] −→ R+ by h(w) = 1
2

∫ t
0 wsds. Let Disc(h) be the set of

discontinuities of h. By the definition of h by (16), it is easy to see that δ(Disc(h)) = 0. It

follows from [30, Theorem 2.1] that as u→ +∞,

uαPx
( 1

2u

∫ t

0
Vsds ∈ ·

)
v−→ δ ◦ h−1(·) on B(R+),

and

δ ◦ h−1(·) = σαN

∫ t

0
E[Vs]

∫ ∞
0

1{ y
2

∫ t
s e
−a(ζ−s)dζ ∈· }να(dy)ds.

Thus we have that

Px
(1

2

∫ t

0
Vsds > u

)
∼ −

(σN
2a

)α ια(t)

α cos(πα/2)Γ(−α)
u−α, u→ +∞.

Furthermore we note that

Ex
[( ∫ t

0

√
VsdBs

)2]
=

∫ t

0
Ex[Vs]ds <∞.

In view of (18), we have that

Px(− logSt > u) ∼ Px
(1

2

∫ t

0
Vsds > u

)
, u→ +∞.

�

Corollary 4.5 Let ΣS(T, k) be the implied volatility of the option written on the stock price S

with maturity T and strike K = ek. Then the left wing of ΣS(T, k) has the following asymptotic

shape as k → −∞:

√
TΣS(T, k)√

2
=

√
−k + α log(−k)− 1

2
log log(−k)

−
√
α log(−k)− 1

2
log log(−k) +O((log(−k))−1/2). (19)

Proof: Without loss of generality we assume k < 0. Note that the put option price can be

written as

P (ek) := E[(ek − ST )+] =

∫ ∞
−k

Px(− logST > u)e−udu.

11



By Proposition 4.4, it is not hard to see that

P (ek) ∼ −
(σN

2a

)α ια(t)

α cos(πα/2)Γ(−α)
ekk−α, k → −∞.

Then (19) follows from the above asymptotic equality and [26, Theorem 3.7]. �

Figure 3 presents the implied volatility curves of the asset options for different values of α

with σN = 1, ρ = 0, the values chosen for the other parameters, the ones of the usual CIR

process, are those proposed by Nicolato et al. [42].

Figure 3: Implied volatilites for asset options

4.2 Variance options

We now consider the variance options for which a large growing literature has been developed

(see for instance [23], [42] and [44]). In particular, it is highlighted in [44] and [42] the upward-

sloping implied volatility skew of VIX2 options. As pointed in Kallsen et al. [34], variance swaps

and their forwards are affine functions of the instantaneous variance process V . In this section,

we will focus on the behavior of this last process, the properties of variance swap and realized

variance could then be deduced easily. The only exception will be the implied volatility showed

in figure 4, where we plot the VIX2-implied volatility in agreement, for instance, with Definition

3.1 in Barletta et al. [4].

In the following, we derive the asymptotic behavior of tail probability of V , which will imply

the moment explosion condition for V and the extreme behaviors of the variance options. We

begin by giving two technical lemmas.

Lemma 4.6 Let X be a positive random variable.

12



(i) (Karamata Tauberian Theorem [8, Theorem 1.7.1]) For constants C > 0, β > 0 and a

slowly varying function (at infinity) L,

E[e−λX ] ∼ Cλ−βL(λ), as λ→∞,

if and only if

P(X ≤ u) ∼ C

Γ(1 + β)
uβL(1/u), as u→ 0+.

(ii) (de Bruijn’s Tauberian Theorem [9, Theorem 4]) Let 0 ≤ β ≤ 1 be a constant, L be a

slowly varying function at infinity, and L∗ be the conjugate slowly varying function to L.

Then

logE[e−λX ] ∼ −λβ/L(λ)1−β as λ→∞,

if and only if

logP(X ≤ u) ∼ −(1− β)ββ/(1−β)u−β/(1−β)L∗(u−1/(1−β)) as u→ 0+.

Lemma 4.7 For any 0 < β < α, there exists a locally bounded function C(·) ≥ 0 such that for

any T ≥ 0,

Ex
[

sup
0≤t≤T

V β
t

]
≤ C(T )(1 + xβ).

Proposition 4.8 (probability tails of Vt) Fix t > 0. For any x ≥ 0, we have that

Px(Vt > u) ∼ −
σαN

αΓ(−α) cos(πα/2)

(
qα(t) + pα(t)x

)
u−α, as u→∞, (20)

where

pα(t) =
1

a(α− 1)

(
e−at − e−αat

)
, qα(t) = b

(
1

αa
(1− e−αat)− pα(t)

)
.

Furthermore,

(i) if σ > 0, then

Px(Vt ≤ u) ∼ u2ab/σ2 v̄
2ab/σ2

t

Γ (1 + 2ab/σ2)
exp

(
− xv̄t − ab

∫ ∞
v̄t

( z

Ψα(z)
− 2

σ2z

)
dz
)
, as u→ 0,(21)

where v̄t is the minimal solution of the ODE

d

dt
v̄t = −Ψα(v̄t), t > 0, (22)

with singular initial condition v̄0+ =∞;

(ii) if σ = 0, then

logPx(Vt ≤ u) ∼ −α− 1

2− α

(
−ab cos

(πα
2

)) 1
α−1

σ
− α
α−1

N u−
2−α
α−1 , as u→ 0. (23)

13



Proof: We have by (4) that

Vt = e−atV0 + ab

∫ t

0
e−a(t−s)ds+ σ

∫ t

0
e−a(t−s)

√
VsdBs + σN

∫ t

0
e−a(t−s)V

1/α
s− dZs. (24)

Note that Ex[Vt] = e−atx+ b(1− e−at). By Markov’s inequality,

Px
(∣∣∣ ∫ t

0
e−a(t−s)

√
VsdBs

∣∣∣ > u
)
≤ u−2Ex

[ ∫ t

0
e−2a(t−s)Vsds

]
≤

(x
a

+ bt
)
u−2. (25)

It follows from Lemma 4.7 that E[sup0≤t≤T ( α
√
Vt)

α+δ] <∞ for 0 < δ < α(α− 1). Then by Hult

and Lindskog [30, Theorem 3.4], we have as u→∞,

Px
(
σN

∫ t

0
e−a(t−s)V

1/α
s− dZs > u

)
∼ να(u,∞)σαN

∫ t

0
e−αa(t−s)Ex[Vs]ds

∼ −
σαN

α cos(πα/2)Γ(−α)

(
qα(t) + pα(t)x

)
u−α. (26)

In view of (24), (25) and (26), the extremal behavior of Vt is determined by the forth term on

the right-hand side of (24). Then we have, as u→∞,

Px(Vt > u) ∼ Px
(
σN

∫ t

0
e−a(t−s)V

1/α
s− dZs > u

)
,

which gives (20). On the other hand, by Proposition 3.2 we have

Ex
[
e−λVt

]
= exp

(
− xvt(λ)− ab

∫ t

0
vs(λ)ds

)
,

where vt(λ) is the unique solution of the following ODE:

∂vt(λ)

∂t
= −Ψα(vt(λ)), v0(λ) = λ. (27)

It follows from [37, Theorem 3.5, 3.8, Corollary 3.11] that v̄t =↑ limλ→∞ vt(λ) exists in (0,∞)

for all t > 0, and v̄t is the minimal solution of the singular initial value problem (22).

First consider the case of σ > 0. By (27),∫ t

0
vs(λ)ds =

∫ λ

vt(λ)

u

Ψα(u)
du =

∫ λ

vt(λ)

2

σ2u
du+

∫ λ

vt(λ)

( u

Ψα(u)
− 2

σ2u

)
du, λ > 0, t > 0.

Note that 2
σ2u
− u

Ψα(u) = O(u−(3−α)) as u → ∞ and thus 0 <
∫∞
v̄t

(
2
σ2u
− u

Ψα(u)

)
du < ∞. A

simple calculation shows that

Ex
[
e−λVt

]
∼ v̄2ab/σ2

t λ−2ab/σ2
exp

(
−xv̄t − ab

∫ ∞
v̄t

( u

Ψα(u)
− 2

σ2u

)
du

)
, λ→ 0.

Then Karamata Tauberian Theorem (see Lemma 4.6 (i)) gives (21).

Now we turn to the case of σ = 0. Denote by σ1 = − σαN
cos(πα/2) . Recall that v̄t =↑

limλ→∞ vt(λ) ∈ (0,∞), which is the minimal solution of the singular initial value problem

(22) with σ = 0. Still by (27),

logEx
[
e−λVt

]
= −xvt(λ)− ab

∫ λ

vt(λ)

1

a+ σ1λα−1
du ∼ ab

α− 2

λ

a+ σ1λα−1
∼ ab

σ1(α− 2)
λ2−α.

Then de Bruijn’s Tauberian Theorem (see Lemma 4.6 (ii)) gives (23). �
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Corollary 4.9 As a consequence of Proposition 4.8, we have, for any α ∈ (1, 2),

{p ∈ R : E[V p
t ] <∞} =

(
−2ab

σ2
, α

)
(28)

where by convention 2ab/σ2 = +∞ if σ = 0.

Proof: By integration by parts, we have, for p > 0,

E[V p
t ] = − lim

u→∞
upP(Vt > u) + p

∫ ∞
0

up−1P(Vt > u)du.

By Proposition 4.8, P(Vt > u) ∼ C(t)u−α as u → ∞ for some function C(t). Then we obtain

E[V p
t ] <∞ for 0 ≤ p < α and E[V p

t ] =∞ for p ≥ α. Similarly, we consider E[(1/Vt)
p] and have

P(1/Vt > u) ∼ D(t)u−2ab/σ2
as u → ∞. Then we obtain E[(1/Vt)

p] < ∞ for 0 ≤ p < 2ab/σ2

and E[(1/Vt)
p] =∞ if p ≥ 2ab/σ2. �

Corollary 4.10 Let ΣV (T, k) be the implied volatility of call option written on the variance

process V with maturity T and strike K = ek and let ψ(q) = 2− 4(
√
q2 + q− q). Then the right

wing of ΣV (T, k) has the following asymptotic shape:

ΣV (T, k) ∼
(ψ(α)

T

)1/2√
k, k → +∞ (29)

The left wing satisfies

(i) if σ > 0, then

ΣV (T, k) ∼
(ψ(2ab

σ2 )

T

)1/2√
−k, k → −∞; (30)

(ii) if σ = 0, then

ΣV (T, k) ∼ 1√
2T

(−k)
(

log
ek

P (ek)

)1/2
, k → −∞. (31)

where P (ek) = E[(ek − VT )+].

Proof: Combining (20) and [42, Proposition 2.2-(a)], we obtain directly (29). Similarly, (21)

and [42, Proposition 2.4-(a)] leads to (30). In the case where σ = 0, (23) implies that sup{p >
0 : E[V −pt ] <∞} =∞. Then (31) follows from [42, Theorem 2.3-(iii)]. �

Corollary 4.10 gives the explicit behavior of the implied volatility of variance options with

extreme strikes far from the moneyness. We note that the right wing depends only on the

parameter α which is the characteristic parameter of the jump term. When α decreases, the

tail becomes heavier and the slope in (29) increases. In contrast, the left wing depends on

the parameters which belong to the pure CIR part with Brownian diffusion and the explaining

coefficient 2ab/σ2 in (30) is linked to the Feller condition. When the Brownian term disappears,

i.e. σ = 0, then there occurs a discontinuity on the left wing behavior of the variance volatility

surface.

Figure 4 presents the VIX2-implied volatility curves (see Definition 3 in [4]) for different

values of α, assuming σN = 1. The values chosen for the other parameters and the ones of the

usual CIR process are those proposed by Nicolato et al. [42].
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Figure 4: VIX2-implied volatility for different values of α.

5 Jump cluster behaviour

In this section, we study the jump cluster phenomenon by giving a decomposition formula of

the variance process V and we analyze some properties of the cluster processes.

5.1 Cluster decomposition of the variance process

Let us fix a jump threshold y = σZy and denote by {τn}n≥1 the sequence of jump times of V

whose sizes are larger than y. We call {τn}n≥1 the large jumps. By separating the large and

small jumps, the variance process (2) can be written as

Vt = V0 +

∫ t

0
a

(
b− σNΘ(α, y)Vs

a
− Vs

)
ds+ σ

∫ t

0

∫ Vs

0
W (ds, du)

+σN

∫ t

0

∫ Vs−

0

∫ y

0
ζÑ(ds, du, dζ) + +σN

∫ t

0

∫ Vs−

0

∫ ∞
y

ζN(ds, du, dζ)

(32)

where

Θ(α, y) =

∫ ∞
y

ζνα(dζ) =
2

π
αΓ(α− 1) sin

(πα
2

)
y1−α. (33)

We denote by

ã(α, y) = a+ σNΘ(α, y) and b̃(α, y) =
ab

a+ σNΘ(α, y)
.
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Then between two large jumps times, that is, for any t ∈ [τn, τn+1), we have

Vt = Vτn +

∫ t

τn

ã(α, y)
(
b̃(α, y)− Vs

)
ds+ σ

∫ t

τn

∫ Vs

0
W (ds, du)

+σN

∫ t

τn

∫ Vs−

0

∫ y

0
ζÑ(ds, du, dζ).

(34)

The expression (34) shows that two phenomena arise between two large jumps. First, the mean

long-term level b is reduced. This effect is standard since the mean level b̃(α, y) becomes lower

to compensate the large jumps in order to preserve the global mean level b. Second and more

surprisingly, the mean reverting speed a is augmented. That is, the volatility decays more

quickly between two jumps. Moreover, this speed is greater when the parameter α decreases

and tends to infinity as α approaches 1 since Θ(α, y) ∼ (α− 1)−1.

We introduce the truncated process of V up to the jump threshold, which will serve as the

fundamental part in the decomposition, as

V
(y)
t = V0 +

∫ t

0
ã(α, y)

(
b̃(α, y)− V (y)

s

)
ds+ σ

∫ t

0

∫ V
(y)
s

0
W (ds, du)

+ σN

∫ t

0

∫ V
(y)
s−

0

∫ y

0
ζÑ(ds, du, dζ), t ≥ 0.

(35)

Similar as V , the process V (y) is also a CBI process. By definition, the jumps of the process V (y)

are all smaller than y. In addition, V (y) coincides with V before the first large jump τ1. The next

result studies the first large jump and its jump size, which will be useful for the decomposition.

We wish to mention that the distribution of τ1 has been studied in [28] and [32].

Lemma 5.1 We have

P(τ1 > t) = E
[

exp
{
−
(∫ ∞

y
µα(dζ)

)(∫ t

0
V (y)
s ds

)}]
. (36)

The jump ∆Vτ1 := Vτ1 − Vτ1− is independent of τ1 and V (y), and satisfies

P(∆Vτ1 ∈ dζ) = 1{ζ>y}
αyα

ζ1+α
dζ. (37)

It is not hard to see that P(Vt ≥ V
(y)
t , ∀t ≥ 0) = 1. Then the large jump in (32) can be

separated into two parts as∫ t

0

∫ Vs−

0

∫ ∞
ȳ

N(ds, du, dζ) =

∫ t

0

∫ V
(y)
s−

0

∫ ∞
ȳ

N(ds, du, dζ) +

∫ t

0

∫ Vs−

V
(y)
s−

∫ ∞
ȳ

N(ds, du, dζ). (38)

Let

J
(y)
t =

∫ t

0

∫ V
(y)
s−

0

∫ ∞
ȳ

N(ds, du, dζ), t ≥ 0 (39)

which is a point process whose arrival times {Tn}n≥1 coincide with part of the large jump times

and those jumps are called the mother jumps. By definition, the mother jumps form a subset
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of large jumps. Each mother jump will induce a cluster process v(n) which starts from time Tn
with initial value ∆VTn = VTn − VTn− and is given recursively by

v
(n)
t = ∆VTn − a

∫ t

Tn

v(n)
s ds+ σ

∫ t

Tn

∫ V
(y)
s +

∑n
i=1 v

(i)
s

V
(y)
s +

∑n−1
i=1 v

(i)
s

W (ds, du)

+ σZ

∫ t

Tn

∫ V
(y)
s− +

∑n
i=1 v

(i)
s−

V
(y)
s− +

∑n−1
i=1 v

(i)
s−

∫
R+

ζÑ(ds, du, dζ), t ∈ [Tn,∞).

(40)

The next result provides the decomposition of V as the sum of the fundamental process V (y)

and a sequence of cluster processes. The decomposition form is inspired by Duquesne and Labbe

[16].

Proposition 5.2 The variance process V given by (2) has the decomposition:

Vt = V
(y)
t +

J
(y)
t∑
n=1

u
(n)
t−Tn , t ≥ 0, (41)

where u
(n)
t = v

(n)
Tn+t with v(n) given by (40). Moreover, we have that

(1) {u(n) : n = 1, 2, · · · } is the sequence of independent identically distributed processes and for

each n, u(n) has the same distribution as an α-CIR(a, 0, σ, σZ , α) process given by

ut = u0 − a
∫ t

0
usds+ σ

∫ t

0

√
usdBs + σN

∫ t

0

α
√
us−dZs, (42)

where u0
d
= ∆Vτ1 and its distribution is given by (37).

(2) The pair (V (y), J (y)) is independent of {u(n)}. Conditional on V (y), J (y) is a time inho-

mogenous Poisson process with intensity function
( ∫∞

ȳ να(dζ)
)
V

(y)
· .

Note that each cluster process has the same distribution as an α-square root jump pro-

cess which is similar to (4) but with parameter b = 0, that is, an α-CIR(a, 0, σ, σZ , α) pro-

cess also known as a CB process without immigration. The jumps given by (J
(y)
t , t ≥ 0) are

called mother jumps in the sense that each mother jump Tn will induce a cluster of jumps,

or so-called child jumps, via its cluster (branching) process u(n). Conversely, any jump from( ∫ t
0

∫ Vs−
V

(y)
s−

∫∞
ȳ N(ds, du, dζ), t ≥ 0

)
in (38), that is, a large jump but not mother jump, is a child

jump of some mother jump, which means that the child jumps can contain both small and large

jumps.

5.2 The cluster processes

We finally focus on the cluster processes and present some of their properties. We are particularly

interested in two quantities. The first one is the number of clusters before a given time t, which

is equal to the number of mother jumps. The second one is the duration of each cluster process.
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Proposition 5.3 (1) The expected number of clusters during [0, t] is

E[J
(y)
t ] =

(1− α)σαZ
cos(πα/2)Γ(2− α)yα

(
b̃(α, y)t+

V0 − b̃(α, y)

ã(α, y)
(1− e−ã(α,y)t)

)
. (43)

(2) Let θn := inf{t ≥ 0 : u
(n)
t = 0} be the duration of the cluster u(n). We have P(θn <∞) = 1

and

E[θn] = αyα
∫ ∞

0

dz

Ψα(z)

∫ ∞
y

1− e−ζz

ζ1+α
dζ. (44)

We note that the expected duration of all clustering processes are equal, which means that

the initial value of u(i), that is, the jump size of the triggering mother jump has no impact on

the duration. By (44), we have

E[θn] = α

∫ ∞
0

dz

Ψα(z)

∫ ∞
1

1− e−ζyz

ζ1+α
dζ,

which implies that E[θn] is increasing with y. It is natural as larger jumps induce longer-time

effects. But typically, the duration time is short, which means that there is no long-range

property for θn, because we have the following estimates:

P(θn > t) ≤ αy

α− 1
q1e
−a(t−1), t > 1, (45)

for some constant 0 < q1 <∞.

We illustrate in Figure 5 the behaviors of the jump cluster processes by the above proposition.

The parameters are similar as in Figure 2 except that we compare three different values for

α = 1.2, 1.5 and 1.8. The first graph shows the expected number of clusters given by (43), as a

function of y for a period of t = 14. We see that when the jump threshold y increases, there will

be less clusters. In other words, we need to wait a longer time to have a very large mother jump.

However once such case happens, more large child jumps might be induced during a cluster

duration so that the duration is increasing with y. For large enough y, the number of clusters

is decreasing with α. In this case, the large jumps play a dominant role. For small values of y,

there is a mixed impact of both small and large jumps which breaks down the monotonicity with

α. The second graph illustrates the duration of one cluster which is given by (44). Although the

duration is increasing with respect to y, it is relatively short (always less than half year) due to

finite expectation and exponentially decreasing probability tails given by (45).

When the jump threshold y becomes extremely large, the point process {J (y)
t } is asymptotic

to a Poisson process and the expected number of clusters converges to a fixed level, as shown

by the following result.

Proposition 5.4 Let {yn}n≥1 be the sequence of positive thresholds with yn ∼ cn1/α as n→∞
where c is some positive constant. Then for each t ≥ 0,

J
(yn)
nt

w−→ Jt, (46)

as n→∞, where J is a Poisson process with the parameter λ given by

λ = −
σαNb

α cos(πα/2)Γ(−α)cα
, 1 < α < 2.
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Figure 5: The expected number of clusters (left) and the duration of one cluster (right) as a

function of the jump threshold y, for different values of α.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

0

1

2

3

4

5

6

7

8

9

E
[J

t(y
) ]

=1.2

=1.5

=1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

E
[

i]

=1.2

=1.5

=1.8

Acknowledgement

We thank Weiwei Zhang for his help on obtaining the graphs for implied volatility. Chunhua

Ma is partially supported by the NSFC of China (11671216). Chao Zhou is supported by

Singapore MOE AcRF Grants R-146-000-219-112, R-146-000-255-114 and NSFC grant 11871364.

This research is supported by Institut Europlace de Finance under the project “Clusters and

Information Flow: Modelling, Analysis and Implications”.

6 Appendix

Proof of Proposition 3.2. As a a direct consequence of [14] and [35], the proof mainly serves

to provide the explicit form of the generalized Riccati equations. By (1) we have

dYt = (r − 1

2
Vt)dt+ ρ

∫ Vt

0
W (dt, du) +

√
1− ρ2

∫ Vt

0
W (dt, du).

By Ito’s formula, we have that the process (Yt, Vt,
∫ t

0 Vsds) is an affine process with generator

given by

Af(y, v, u) = (r − 1

2
v)f ′y(y, v, u) + a(b− v)f ′v(y, v, u) + vf ′u(y, v, u)

+
1

2
vf ′′yy(y, v, u) + ρσvf ′′yv(y, v, u) +

1

2
σ2vf ′′vv(y, v, u)

+σαNv

∫ ∞
0

(
f(y, v + ζ, u)− f(y, v, u)− f ′v(y, v, u)ζ

)
να(dζ).

Denote by Xt = (Yt, Vt,
∫ t

0 Vsds). We aim to find some functions (φ, Ψ̃) ∈ C × C3 with

φ(0, ξ) = 0 and Ψ̃(0, ξ) = ξ such that the following duality holds

E
[
e〈ξ,XT 〉

]
= exp

(
φ(T, ξ) + 〈Ψ̃(T, ξ), X0〉

)
. (47)
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In fact, if

Mt = f(t,Xt) = exp
(
φ(T − t, ξ) + 〈Ψ̃(T − t, ξ), Xt〉

)
is a martingale, then we immediately have that

E[e〈ξ,XT 〉] = E[MT ] = M0 = exp
(
φ(T, ξ) + 〈Ψ̃(T, ξ), X0〉

)
,

which implies (47). Now assume that (φ, Ψ̃) are sufficiently differential and applying the Ito

formula to f(t,Xt), we have that

MT −M0 = local martingale part−
∫ T

0
f(t,Xt)

(
φ̇(T − t, ξ) + 〈Xt,

˙̃Ψ(T − t, ξ)〉
)
dt

+

∫ T

0
f(t,Xt)Ψ̃1(T − t, ξ)(r − 1

2
Vt)dt+

∫ T

0
f(t,Xt)Ψ̃2(T − t, ξ)a(b− Vt)dt

+

∫ T

0
f(t,Xt)Ψ̃3(T − t, ξ)Vtdt+

1

2

∫ T

0
f(t,Xt)Ψ̃

2
1(T − t, ξ)Vtdt

+ρσ

∫ T

0
f(t,Xt)Ψ̃1(T − t, ξ)Ψ̃2(T − t, ξ)Vtdt+

1

2
σ2

∫ T

0
f(t,Xt)Ψ̃

2
2(T − t, ξ)Vtdt

+σαN

∫ T

0
f(t,Xt)Vt

∫ ∞
0

[
exp{Ψ̃2(T − t, ξ)z} − 1− Ψ̃2(T − t, ξ)z

]
να(dz)

where Ψ̃ = (Ψ̃1, Ψ̃2, Ψ̃3). Then f(t,Xt) is a local martingale, if

φ̇(T − t, ξ) = rΨ̃1(T − t, ξ) + abΨ̃2(T − t, ξ), ˙̃Ψ1(T − t, ξ) = 0, ˙̃Ψ3(T − t, ξ) = 0,

and

˙̃Ψ2(T − t, ξ) = −1

2
Ψ̃1(T − t, ξ)− aΨ̃2(T − t, ξ) + Ψ̃3(T − t, ξ)

+
1

2
Ψ̃2

1(T − t, ξ) + ρσΨ̃1(T − t, ξ)Ψ̃2(T − t, ξ) +
1

2
σ2Ψ̃2

2(T − t, ξ)

+σαN

∫ ∞
0

(
ezΨ̃2(T−t,ξ) − 1− zΨ̃2(T − t, ξ))

)
να(dz).

Then we have that Ψ̃1(t, ξ) = ξ1 and Ψ̃3(t, ξ) = ξ3 for 0 ≤ t ≤ T . Furthermore Ψ̃2(t, ξ) solves

the ODE

˙̃Ψ2(t, ξ) = −1

2
ξ1 − aΨ̃2(t, ξ) + ξ3 +

1

2
ξ2

1 + ρσξ1Ψ̃2(t, ξ) +
1

2
σ2Ψ̃2

2(t, ξ)

+σαN

∫ ∞
0

(
ezΨ̃2(t,ξ) − 1− zΨ̃2(t, ξ))

)
να(dz)

= −1

2
ξ1 − aΨ̃2(t, ξ) + ξ3 +

1

2
ξ2

1 + ρσξ1Ψ̃2(t, ξ) +
1

2
σ2Ψ̃2

2(t, ξ)−
σαN

cos(πα/2)
(−Ψ̃2(t, ξ))α

Now let Ψ(t, ξ) = Ψ̃2(t, ξ), which obviously satisfies the ODE (9) and

φ(t, ξ) =

∫ t

0
(rξ1 + abΨ(s, ξ)ds.

The proof is thus complete. �
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Proof of Lemma 4.3. Consider (24). By Doob’s inequality,

Ex
[

sup
0≤t≤T

∣∣∣ ∫ t

0
e−a(t−s)

√
VsdBs

∣∣∣2] ≤ 4Ex
[ ∫ T

0
e2asVsds

]
≤ 2x+ b

2a
e2aT

which implies that uαPx(sup0≤t≤T |
∫ t

0 e
−a(t−s)√VsdBs| > u) → 0 as u → ∞. Then, in view of

(24), the extremal behavior of Vt in the sense of (16) is determined by

σN

∫ t

0
e−a(t−s) α

√
Vs−dZs = e−at · σN

∫ t

0
eas α
√
Vs−dZs := Xt · Yt.

Note that E[sup0≤t≤T ( α
√
Vt)

α+δ] < ∞ for 0 < δ < α(α − 1) from Lemma 4.7. Then by [30,

Theorem 3.4], we have as u→∞,

uαP(Y/u ∈ ·) ŵ−→ δY (·) on B(D̄0([0, T ]), (48)

where δ is given by:

δY (·) = TE
[ ∫ ∞

0
1{wt:=σNeaτ α

√
Vτy1[τ,T ](t)∈·}να(dy)

]
,

where τ is uniformly distributed on [0, T ] and independent of V . Furthermore, by [30, Theorem

3.1], we have as u→∞,

uαP(XY /u ∈ ·) ŵ−→ δY (w ∈ D̄0[0, T ] : Xw ∈ ·) on B(D̄0([0, T ]),

A simple calculation shows that

δ(·) := δY (w ∈ D̄0[0, T ] : Xw ∈ ·) = σαN

∫ T

0
E[Vs]

∫ ∞
0

1{wt=e−a(t−s)y1[s,T ](t)∈·}να(dy)ds

�

Proof of Lemma 4.7. By (24), an elementary inequality shows that there exists a locally

bounded function C1(·) such that

Ex
[

sup
0≤t≤T

V β
t

]
≤ C1(T )

(
xβ + bβ + σβEx

[
sup

0≤t≤T

∣∣ ∫ t

0
e−a(t−s)

√
VsdBs

∣∣β]
+σβNEx

[
sup

0≤t≤T

∣∣ ∫ t

0
e−a(t−s)V

1/α
s− dZs

∣∣β]). (49)

By Hölder’s inequality and Doob’s martingale inequality, there exist a locally bounded function

C2(·) such that

Ex
[

sup
0≤t≤T

∣∣∣ ∫ t

0
e−a(t−s)

√
VsdBs

∣∣∣β] ≤ 2βEx
[( ∫ T

0
e2asVsds

)β/2]
≤ 2β

(∫ T

0
Ex[e2asVs]ds

)β/2
≤ C2(T )

(
xβ/2eβaT/2 + eβaT

)
.

Moreover, by Long [40, Lemma 2.4], which is a generalization of Rosinski and Woyczynski [43,

Theorem 3.2], there exist locally bounded functions C3(·) and C4(·) such that
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Ex
[

sup
0≤t≤T

∣∣∣ ∫ t

0
e−a(t−s)V

1/α
s− dZs

∣∣∣β] ≤ C3(T )Ex
[( ∫ T

0
eαasVsds

)β/α]
≤ C3(T )

(∫ T

0
Ex[eαasVs]ds

)β/α
≤ C4(T )

(
xβ/αeβa(1−1/α)T + eβaT

)
.

By combining (49), (50) and (50), we have the lemma. �

Proof of Lemma 5.1. The proof of (36) is based on [28, Theorem 3.2], see also [32, Corollary

5.2] for a different approach. By (2), we note that

{τ1 > t} =
{
τ1 > t,

∫ t

0

∫ Vs−

0

∫ ∞
y

ζN(ds, du, dζ) = 0
}
.

Since V (y) coincides with V up to τ1, the comparison between (2) and (35) implies that

{τ1 > t} =
{
τ1 > t,

∫ t

0

∫ V
(y)
s−

0

∫ ∞
y

ζN(ds, du, dζ) = 0
}
a.s.

If τ1 ≤ t, we immediately have∫ t

0

∫ V
(y)
s−

0

∫ ∞
y

ζN(ds, du, dζ) ≥
∫ τ1

0

∫ V
(y)
s−

0

∫ ∞
y

ζN(ds, du, dζ)

=

∫ τ1

0

∫ Vs−

0

∫ ∞
y

ζN(ds, du, dζ) > 0.

Thus

{τ1 > t} =
{∫ t

0

∫ V
(y)
s−

0

∫ ∞
y

ζN(ds, du, dζ) = 0
}
a.s. (50)

Recall that 1{ζ>y}N(ds, du, dζ) is the restriction of N(ds, du, dζ) to (0,∞)× (0,∞)× (y,∞),

which is independent of 1{ζ≤y}N(ds, du, dζ). By (35) we have that 1{ζ>y}N(ds, du, dζ) is in-

dependent of (V
(y)
t , t ≥ 0). Then conditional on (V

(y)
t , t ≥ 0),

∫ t
0

∫ V (y)
s−

0

∫∞
y N(ds, du, dζ) is

a time inhomogenous Poisson process with intensity function
( ∫∞

y να(dζ)
)
V (y)
. . Note that

τ1 is the first jump time of σZ
∫ t

0

∫ V (y)
s−

0

∫∞
y N(ds, du, dζ), and ∆Vτ1 is the first jump size of

σZ
∫ t

0

∫ V (y)
s−

0

∫∞
y N(ds, du, dζ). Then we have

E
[
τ1 ∈ dt, ∆Vτ1 ∈ dζ |V (y)

.

]
=
(∫ ∞

y
να(dx)

)(
V

(y)
t dt

)(αyα1{ζ>y}

ζ1+α
dζ
)
,

which implies that ∆Vτ1 is independent of τ1 and V (y). �

Proof of Propositon 5.2

Step 1. Recall that τ1 = inf{t > 0 : ∆Vt > y} and T1 is the first jump time of the point

process {Jt : t ≥ 0} given by (39). By (50), we immediately get τ1 = T1 a.s.. Thus by Lemma
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5.1, we have that V (y) coincides with V up to T1 and ∆VT1 is independent of V (y). Note that

V
(y)
T1

= VT1− and

V
(y)
t = VT1− +

∫ t

T1

ã(α, y)
(
b̃(α, y)− V (y)

s

)
ds+ σ

∫ t

T1

∫ V
(y)
s

0
W (ds, du)

+ σN

∫ t

T1

∫ V
(y)
s−

0

∫ y

0
ζÑ(ds, du, dζ), t ≥ T1.

(51)

By taking k = 1 in (40),

v
(1)
t = ∆VT1 − a

∫ t

T1

v(1)
s ds+ σ

∫ t

T1

∫ V
(y)
s +v

(1)
s

V
(y)
s

W (ds, du)

+ σN

∫ t

T1

∫ V
(y)
s− +v

(1)
s−

V
(y)
s−

∫
R+

ζÑ(ds, du, dζ), t ≥ T1.

(52)

As mentioned above, ∆T1 is independent of VT1−. By using the property of independent and

stationary increments of W and N , we have that v(1) and V (y) are independent of each other

and {u(1)
t := v

(1)
T1+t, t ≥ 0} is a CB process which has the same distribution as u given by (42);

see e.g., [13, Theorem 3.2, 3.3]). Now set

V̄
(1)
t = VT1− +

∫ t

T1

a
(
b− V̄ (1)

s

)
ds+ σ

∫ t

T1

∫ V̄
(1)
s

0
W (ds, du)

+ σN

∫ t

T1

∫ V̄
(1)
s−

0

∫
R+

ζÑ(ds, du, dζ), t ≥ T1.

(53)

It is easy to see V̄ (1) is of the same type as V but with initial value VT1− and starting from time

T1. Define

τ̄1 := inf{t > T1 : ∆V̄
(1)
t > y},

which is the first jump time of V̄ (1) whose jump size larger than y. Then a comparison of (51)

and (53) shows that V̄
(1)
t = V

(y)
t for t ∈ [T1, τ̄1). Furthermore the similar proof of Lemma 5.1

shows that for any t > 0,

{τ̄1 − T1 > t} =
{∫ T1+t

T1

∫ V
(y)
s−

0

∫ ∞
y

ζN(ds, du, dζ) = 0
}
a.s.,

which implies that τ̄1 = T2 a.s. Thus ∆V̄
(1)
τ̄1 = ∆VT2 and ∆VT2 is independent of V (y) and ∆VT1 .

Furthermore V̄
(1)
t = V

(y)
t for t ∈ [T1, T2). We get that

V
(y)
t + v

(1)
t = V̄

(1)
t + v

(1)
t = Vt, a.s. t ∈ [T1, T2). (54)

The third equality follows from (53), (52) and (2).

Step 2. By taking k = 2 in (40),

v
(2)
t = ∆VT2 − a

∫ t

T2

v(2)
s ds+ σ

∫ t

T2

∫ V
(y)
s +v

(1)
s +v

(2)
s

V
(y)
s +v

(1)
s

W (ds, du)

+ σN

∫ t

T2

∫ V
(y)
s− +v

(1)
s−+v

(2)
s−

V
(y)
s− +v

(1)
s−

∫
R+

ζÑ(ds, du, dζ), t ≥ T2.

(55)
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Since ∆VT2 is independent of V
(y)
T2

and ∆VT1 , still by using the property of independent and

stationary increments of W and N , we have that v(2) are independent of V (y) and v(1), and

{u(2)
t := v

(2)
T2+t, t ≥ 0} is also a CB process which has the same distribution as u. Now set

V̄
(2)
t = V

(y)
T2

+

∫ t

T2

a
(
b− V̄ (2)

s

)
ds+ σ

∫ t

T2

∫ V̄
(2)
s

0
W (ds, du)

+ σN

∫ t

T2

∫ V̄
(2)
s−

0

∫
R+

ζÑ(ds, du, dζ), t ≥ T2.

(56)

Define

τ̄2 := inf{t > T2 : ∆V̄
(2)
t > y},

As proved in Step 2 we have that τ̄2 = T3 a.s. and V̄
(2)
t = V

(y)
t for t ∈ [T2, T3). Note that

VT2− = V
(y)
T2

+ ∆r
(1)
T2

by (54). We get that

V
(y)
t + v

(1)
t + v(2) = V̄

(2)
t + v

(1)
t + v

(2)
t = Vt, a.s. t ∈ [T2, T3).

Step 3. By induction, it is not hard to prove that Vt = V
(y)
t +

∑n
k=1 v

(k)
t holds for any t ∈

[Tn, Tn+1) and n ≥ 1, and the sequence of i.i.d processes is of the same distribution as u.

Furthermore {u(n)} is independent of V (y). Then we have this proposition. �

Proof of Propositon 5.3 (1) Note that J
(y)
t

d
=
∫ t

0

∫ V (y)
s−

0

∫
DM(ds, du, dω). Then

E[J
(y)
t ] =

∫ t

0
E[V (y)

s ]ds

∫ ∞
ȳ

να(dζ).

A simple computation shows (43). (2) By Proposition 5.2, u(n) is a subcritical CB process

without immigration, i.e. the branching mechanism is

Ψα(q) = aq +
σ2

2
q2 −

σαN
cos(πα/2)

qα.

and the immigration rate Φ(q) = 0. Then 0 is an absorbing point of θn and θn is the extinct

time of CB process u(n). Since
∫∞

1 1/Ψα(u)du < ∞, the so-called Grey’s condition is satisfied,

it follows from Grey [25, Theorem 1] that

P(θn <∞) =

∫ ∞
0

Px(θn <∞)P(∆VTn ∈ dx) = 1.

Furthermore, still by [25, Theorem 1], we have that

P(θn > t) = E[1− e−∆VTnqt ] = αyα
∫ ∞
y

(1− e−xqt)x−(1+α)dx, (57)

where qt is the minimal solution of the ODE

d

dt
qt = −Ψα(qt), t > 0,
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with q0+ =∞. In this case, 0 < qt <∞ for t ∈ (0,∞). Then

E[θn] = αyα
∫ ∞

0

∫ ∞
y

(1− e−xqs)x−(1+α)dxds,

which gives (44) by (57). �

Proof of Propositon 5.4 By (39), we have

J
(yn)
nt =

∫ nt

0

∫ V
(yn)
s−

0

∫ ∞
ȳn

N(ds, du, dζ)

where ȳn = yn/σN . It follows from Proposition 5.2-(2) that for any θ > 0,

E
[
e−θJ

(yn)
nt

]
= E

[
exp

{(∫ ∞
ȳn

να(dξ)
)∫ nt

0
V (yn)
s ds

(
e−θ − 1

)}]
= E

[
exp

{(
n

∫ ∞
ȳn

να(dξ)
) 1

n

∫ nt

0
V (yn)
s ds

(
e−θ − 1

)}]
. (58)

Based on (35), for fixed yn, {V (yn)
t : t ≥ 0} is a CBI process. By [32, Remark 5.3], for θ > 0,

E
[
e−

θ
n

∫ nt
0 V

(yn)
s ds

]
= exp

{
− vn(θ, nt)V0 − ab

∫ nt

0
vn(θ, s)ds

}
(59)

where vn(θ, t) is the unique solution of

dvn(θ, t)

dt
=
θ

n
−Ψn(vn(θ, t)), (60)

with vn(θ, 0) = 0, and

Ψn(q) =
(
a+ σαN

∫ ∞
yn

ξνα(dξ)
)
q +

σ2

2
q2 + σαN

∫ yn

0
(e−qξ − 1 + qξ)να(dξ).

Then we have −Ψn(vn(θ, t)) ≤ dvn(θ,t)
dt ≤ θ

n − avn(θ, t), which implies that 0 ≤ vn(θ, t) ≤
θ
an(1− e−at). By (60),

nvn(θ, nt) =
θ

an
(1− e−nant)−

∫ nt

0
e−an(nt−s)nΨ̂n(vn(θ, s))ds, (61)

where

an = a+ σαN

∫ ∞
yn

ξνα(dξ), Ψ̂n(q) =
σ2

2
q2 + σαN

∫ yn

0
(e−qξ − 1 + qξ)να(dξ).

Note that an → a, and for all t ≥ 0 and n ≥ 1,

0 ≤ nvn(θ, t) ≤ θ

a
, nΨ̂n(vn(θ, t)) ≤ σ2θ2

2a2n
−

σαNθ
α

cos(πα/2)aαnα−1
.

By (61), we have nvn(θ, nt)→ θ
a and then∫ nt

0
vn(θ, s)ds =

∫ t

0
nvn(θ, ns)ds→ θt

a
.
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Thus by (59), we have for any t ≥ 0,∫ nt
0 V

(yn)
s ds

n

p→ bt.

Recall that yn ∼ cn1/α. Then n
∫∞
ȳn
να(dξ)→ − σαN

α cos(πα/2)Γ(−α)cα . By (58),

E
[
e−θJ

(yn)
nt

]
→ exp

{
−

σαNbt

α cos(πα/2)Γ(−α)cα
(e−θ − 1)

}
,

which completes the proof. �
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with a view towards simulation, Journal of Applied Probability, 38, 482-493.

[4] Barletta A, Nicolato E, Pagliarani S. (2018): The shorttime behavior of VIXimplied volatil-

ities in a multifactor stochastic volatility framework. Mathematical Finance, forthcoming,

https://doi.org/10.1111/mafi.12196.

[5] Barndorff-Nielsen, E. and Shephard, N. (2001): Non-Gaussian Ornstein-Uhlenbeck-based

models and some of their uses in financial economics, Journal of Royal Statistical Society,

Series B, 63(2), 167-241.

[6] Bates, D. (1996): Jump and stochastic volatility: exchange rate processes implicit in

Deutsche market options, Review of Financial Studies, 9, 69-107.

[7] Bayer, C.; Friz, P., and Gatheral, J. (2016): Pricing under rough volatility. Quantitative

Finance, 16(6), 887-904.

[8] Bingham, N. H., Goldie C. M. and Teugels, J. L. (1987): Regular Variation. Cambridge:

Cambridge Univ Press.

[9] Bingham, N. H. and Teugels, J. L. (1975): Duality for regularly varying functions. Quart J

Math Oxford, 26, 333-353.

[10] Carr, P. and Lee, R. (2007): Realized volatility and variance: options via swaps, RISK, 20,

76-83.

[11] Cox, J., Ingersoll, J. and Ross, S. (1985): A theory of the term structure of interest rate.

Econometrica, 53, 385-408.

[12] Da Fonseca, J. and Grasselli, M. (2011): Riding on the smiles. Quantitative Finance 11.11

(2011): 1609-1632.

27



[13] Dawson, A and Li, Z. (2012): Stochastic equations, flows and measure-valued processes.

Annals of Probability, 40(2), 813-857.

[14] Duffie, D., Pan, J. and Singleton, K. (2000): Transform analysis and asset pricing for affine

jump-diffusions. Econometrica, 68(6), 1343-1376.
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