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Abstract We introduce a class of interest rate models, called the α-CIR model,
which is a natural extension of the standard CIR model by adding a jump part driven
by α-stable Lévy processes with index α ∈ (1,2]. We deduce an explicit expression
for the bond price by using the fact that the model belongs to the family of CBI and
affine processes, and analyze the bond price and bond yield behaviors. The α-CIR
model allows us to describe in a unified and parsimonious way several recent obser-
vations on the sovereign bond market such as the persistency of low interest rates
together with the presence of large jumps. Finally, we provide a thorough analysis of
the jumps, and in particular the large jumps.
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1 Introduction

On the current European sovereign bond market, there exists a number of well-
established and seemingly puzzling facts. On the one hand, the interest rate has
reached a historically low level in the Euro countries. On the other hand, sovereign
bonds can have large variations when uncertainty about unpredictable political or
economic events increases such as in the Greek case. The aim of this paper is to
present a new model for the short interest rate, called the α-CIR model, in which we
give a natural extension of the well-known Cox–Ingersoll–Ross (CIR, see [7]) model
by using α-stable branching processes in order to describe these recent observations
on the bond market.

In the literature, large fluctuations in financial data motivate naturally the intro-
duction of jumps in the interest rate dynamics such as in Eberlein and Raible [14],
Filipović et al. [20]. Nevertheless, the presence of jumps conflicts in general with the
trend of low interest rates. One way to reconcile large fluctuations with low rates is
to use a regime change framework, but this may increase the dimension of stochas-
tic processes in order to preserve the Markov property. Recently, Hawkes processes
introduced in [23] have been widely adopted since they exhibit self-exciting proper-
ties which are suitable for such modeling. A large and growing literature is devoted
to the financial application of Hawkes processes; see, for example, Aït-Sahalia et al.
[1], Errais et al. [16], Dassios and Zhao [8], and Rambaldi et al. [33]. In the above
mentioned papers, as naturally in the Hawkes framework, the driving process is at
least two-dimensional since both the dynamics of the jump process and its intensity
are taken into account.

In this paper, we introduce a short interest rate model by using the α-stable Lévy
process, which provides a relatively simple jump model to respond to these model-
ing challenges in a concise way. The α-CIR model consists of a spectrally positive
α-stable Lévy process besides the Brownian motion, where the parameter α ∈ (1,2]
characterizes the tail fatness and the jump behavior. When α equals 2, the α-stable
process reduces to a Brownian motion and we recover the classic CIR model. In the
general case when α ∈ (1,2), there may appear infinitely many jumps in a finite time
interval, which represent the fluctuations related to sovereign risks. We exploit an
integral representation of the α-CIR model with random fields. From the theoretical
point of view, this general representation has been thoroughly studied by Dawson and
Li [9, 10] and Li and Ma [32] in the framework of CBI (continuous state branching
processes with immigration) processes. In the financial literature, the random field
modeling has been adopted to describe interest rate term structures; see, for example,
Kennedy [30] and Albeverio et al. [3]. In our model, we adopt the integral represen-
tation to emphasize the property of branching processes since they arise as the limit
of Hawkes processes and exhibit, by their nature, the self-exciting property implying
that the jump frequency increases or decreases with the value of the process itself.
In the modeling of interest rates, the link between CBI processes and nonnegative
affine models has been established by the pioneering paper of Filipović [18] where
the exponential-affine term structure of bond prices for general CBI processes has
been highlighted. The CBI processes have proved to be a prolific subject in proba-
bility having interesting applications in finance; see, for instance, Duffie et al. [11].
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The most simple and popular CBI process is the continuous CIR model. However,
empirical studies underline that the behavior of bond prices cannot be fully explained
by the CIR model which systematically overestimates short interest rates, as pointed
out by Brown and Dybvig [6] and Gibbons and Ramaswamy [22]. In our framework,
the CIR model is the departing model, and the inclusion of α-stable processes allows
us to better describe the low interest rate behavior.

Despite the simplicity and the small number of extra parameters compared to the
standard CIR, the α-CIR model shows several advantages from the financial point of
view. First, the α-CIR model exhibits positive jumps and in particular, by combining
a heavy-tailed jump distribution with infinite activity, can describe in a unified way
both the large fluctuations observed in recent sovereign bond markets and the usual
small oscillations. Second, the interest rate can be split into different components in
a branching process framework which can eventually be interpreted as spreads, each
one following the same dynamics. Third, by the link between the α-CIR model and
the CBI processes, we deduce the bond prices in an explicit way by using the joint
Laplace transform of the affine model in Filipović [18], and we analyze the bond
yield behaviors following the paper of Keller-Ressel and Steiner [29].

The main, and perhaps most interesting, forecast of the α-CIR model is that the
bond prices decrease with respect to the parameter α, with those given by the standard
CIR model being the lowest prices. The parameter α is inversely related to the tail
fatness. In general, the standard behavior of bond prices increases with respect to the
fatness of tails, as is the case in the extended CIR model with jumps in Duffie and
Gârleanu [12] or in the Lévy–Ornstein–Uhlenbeck (LOU) dynamics (e.g. Barndorff-
Nielsen and Shephard [5]) in which the jump part is a subordinator. The explanation
of this seemingly paradoxical result is based on the features of the α-CIR model. The
use of fat-tail-distributed positive jumps will imply a large negative compensator so
that between two jumps, the mean reversion term is magnified whenever α decreases.
Moreover, for a given value of α, the branching property adds a new phenomenon in
the α-CIR model. The frequency of large jumps decreases when interest rates are low
thanks to the self-exciting structure which allows some “freezing” effect of low short
rates for relatively longer time periods compared to the standard CIR model.

From the mathematical point of view, we use the CBI characterization to deduce
some useful properties of the α-CIR model such as the positivity condition and the
limit distribution. We are particularly interested in the jump behavior, notably for the
large jumps which signify in the interest rate dynamics a sudden increasing sovereign
risk. We focus on the number of large jumps that occur during a given time interval
and deduce its Laplace transform, with which we obtain the probability law and the
expectation for the first large jump time. The impact of the tail index α is emphasized.
Numerical illustrations show that the first large jump is more likely to occur for a
smaller α. In addition, we make a comparison with a locally equivalent CIR model
with jumps in which the jump frequency is not adapted to the actual level of the
interest rate, but is fixed according to the initial short rate value.

The paper is organized as follows. Section 2 presents the mathematical framework
of the α-CIR model and its connections to the Hawkes process. Section 3 is devoted
to the characterization of the model as a CBI process and hence as an affine process,
and the properties derived from this link. In Sect. 4, we apply our model to term struc-
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ture modeling and present in particular the closed-form bond price and its behaviors.
Section 5 deals with the analysis of jumps.

2 Model framework

This section introduces the α-CIR interest rate model and its basic properties. We fix
a probability space (Ω,F ,P) equipped with a filtration F = (Ft )t≥0 satisfying the
usual conditions.

2.1 Two representations for the α-CIR model

We begin by presenting the following root representation for the short interest rate
r = (rt )t≥0, which is a direct extension of the standard CIR model as

rt = r0 +
∫ t

0
a(b − rs) ds + σ

∫ t

0

√
rs dBs + σZ

∫ t

0
r

1/α
s− dZs, (2.1)

where B = (Bt )t≥0 is a Brownian motion and Z = (Zt )t≥0 a spectrally positive
α-stable compensated Lévy process with parameter α ∈ (1,2] which is independent
of B and whose Laplace transform is given, for q ≥ 0, by

E[e−qZt ] = exp

(
− tqα

cos(πα/2)

)
.

When α ∈ (1,2), the corresponding Lévy measure is given by

− 1{z>0} dz

cos(πα/2)Γ (−α)z1+α
.

In other words, Zt follows the α-stable distribution with scale parameter t1/α , skew-
ness parameter 1 and zero drift, i.e., Zt ∼ Sα(t1/α,1,0).

The existence of a unique strong solution to (2.1) follows from Fu and Li [21,
Theorem 5.3]. We call the process defined by (2.1) the α-CIR process with parameters
(a, b, σ,σZ,α) and denote it by α-CIR(a, b, σ,σZ,α).

It is easy to see that the CIR model belongs to the class (2.1) by taking σZ = 0.
Another case where we recover a CIR process is when α = 2. In this case, the pro-
cess Z becomes a standard Brownian motion scaled by the coefficient

√
2 which is

independent of B . Hence an α-CIR process satisfying (2.1) is actually a CIR process
of the form

rt = r0 +
∫ t

0
a(b − rs) ds +

√
σ 2 + 2σ 2

Z

∫ t

0

√
rs dB̃s,

where B̃ = (σB + σZZ)/

√
σ 2 + 2σ 2

Z is a standard Brownian motion.
The departure of the process Z from Brownian motion is controlled by the tail

index α. When α < 2, Z is a pure jump process with heavy tails. For any fixed t , the
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Fig. 1 Lévy process Z (left) and the corresponding short rate r (right) with different values of α: blue
line for α = 2, green line for α = 1.5, black line for α = 1.2

distribution of Zt is a stable distribution and the tail of the distribution decays like
a power function with index −α. This means that a stable random variable exhibits
more variability than a Gaussian one and it is more likely to take values far away
from the median. Compared to a standard Poisson or compound Poisson process, this
pure jump process has an infinite number of (small) jumps over any time interval,
allowing it to capture the extreme activity. At the same time α-stable processes share
some properties with Brownian motion such as self-similarity or the stability prop-
erty, which means that the distribution of the α-stable process over any horizon has
the same shape upon scaling. From the statistical point of view, the process given by
(2.1) is characterized by two more parameters with respect to the CIR model, namely
α and σZ .

Figure 1 gives a simulation for the compensated α-stable process Z and the corre-
sponding short interest rate r defined in (2.1) with three different values of α: 2, 1.5,
and 1.2. The other parameters are fixed to be a = 0.1, b = 0.3, σ = 0.1, σZ = 0.3,
and r0 = 0.1. We observe that smaller values of α imply larger jumps and deeper
negative drift between the jumps in Z. As the jumps are related to the actual level
of the interest rate r (see more details in Sect. 2.2), smaller values of α also corre-
spond to a persistency of low interest rates, as shown by the path of α = 1.2 in Fig. 1
(right).

We then introduce a general integral representation for the α-CIR model by using
random fields; see, for instance, [15]. Let us consider for any t ≥ 0 the equation

rt = r0 +
∫ t

0
a(b−rs) ds +σ

∫ t

0

∫ rs

0
W(ds, du)+σZ

∫ t

0

∫ rs−

0

∫
R+

ζ Ñ(ds, du, dζ ),

(2.2)
where W(ds, du) is a white noise on R

2+ with intensity ds du, Ñ(ds, du, dζ ) is an in-
dependent compensated Poisson random measure on R

3+ with intensity ds duμ(dζ )

with μ(dζ ) being a Lévy measure on R+ and satisfying
∫ ∞

0 (ζ ∧ ζ 2)μ(dζ ) < ∞.
It follows from Dawson and Li [10, Theorem 3.1] or Li and Ma [32, Theorem 2.1]
that (2.2) has a unique strong solution. We call the process given by (2.2) the α-CIR
integral type process with parameters (a, b, σ,σZ,μ).
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When the Lévy measure μ is given by

μα(dζ ) = − 1{ζ>0} dζ

cos(πα/2)Γ (−α)ζ 1+α
, 1 < α < 2, (2.3)

the solution of (2.2) has the same probability law as that of (2.1). Moreover, on an
extended probability space, the solutions of the two equations are equal almost surely
by using similar arguments as in [31, Theorem 9.32].

2.2 Link to Hawkes process

We explain the connection of the α-CIR model to Hawkes processes and the related
self-exciting property. We begin by considering a standard CIR model with integral
representation. Let W(ds, du) be a white noise on R

2+ with intensity ds du. The CIR
process r , when σZ = 0, is given in the form

rt = r0 +
∫ t

0
a(b − rs) ds + σ

∫ t

0

∫ rs

0
W(ds, du),

or equivalently as

rt = r∗(t) + σ

∫ t

0

∫ rs

0
e−a(t−s)W(ds, du), (2.4)

where r∗(t) is a deterministic function given by r∗(t) = r0e
−at + ab

∫ t

0 e−a(t−s) ds.
The expression (2.4), where the integral interval depends on the level of r , shows the
self-exciting feature.

We then consider a simple Hawkes process with exponential kernel, which is de-
fined as a point process J with intensity r given by

rt = r∗(t) +
∫ t

0
e−a(t−s) dJs,

where r∗ is the background rate, i.e., the deterministic part of the process J . When a
jump arrives, the intensity r increases, which also increases the probability of a next
jump; this is the self-exciting property of the Hawkes process. In order to facilitate the
comparison with our integral representation, we give a different characterization of
the intensity r . Let N be a Poisson process on R

2 with characteristic measure ds du,
so Jt can be written in the form

∫ t

0

∫ rs−
0 N(ds, du) and rt as

rt = r∗(t) +
∫ t

0

∫ rs−

0
e−a(t−s)N(ds, du).

In this form, the self-exciting feature can be observed as follows: the frequency of
jumps grows with the process itself due to the presence of the integral with respect to
the variable u. Moreover, when r∗ takes a particular form, r is a branching process
which belongs to the family of affine processes in finance (see Duffie et al. [11]).

Let us now come back to the integral representation (2.2) of the α-CIR model.
We let σ = 0 and μ(dζ ) = δ1(dz); then the (non-compensated) Poisson measure
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N(ds, du, dζ ) reduces to a random measure on R
2+ with intensity ds du, denoted by

N(ds, du). Hence r can be rewritten as

rt = r0 + abt −
∫ t

0
(a + σZ)rs ds + σZ

∫ t

0

∫ rs−

0
N(ds, du).

We note that r is the intensity of the Hawkes process
∫ t

0

∫ rs−
0 N(ds, du) by using the

equivalent form

rt = r0e
−(a+σZ)t + ab

a + σZ

(1− e(a+σZ)t )+
∫ t

0

∫ rs−

0
e−(a+σZ)(t−s)N(ds, du). (2.5)

As a consequence, α-CIR integral type processes, and in particular the α-CIR pro-
cesses, can be seen as marked Hawkes processes influenced by a Brownian noise.

Furthermore consider a sequence of processes (r
(n)
t )t≥0 defined by (2.5) with pa-

rameters (a/n,nb,σZ). Note that as n → ∞, we have

(r
(n)
nt /n)

L−→(Yt ) in D(R+),

where Y follows a CIR model given by Yt = ∫ t

0 a(b − Ys) ds + σZ

∫ t

0

∫ Ys

0 W(ds, du)

and D(R+) denotes the space of càdlàg functions with the Skorokhod topology.
Therefore, a sequence of rescaled Hawkes processes converges weakly to the CIR
process; see Jaisson and Rosenbaum [25] for more details, notably on the conver-
gence of the nearly unstable Hawkes process with general kernel, after suitable rescal-
ing, to a CIR process.

3 CBI characterization

In this section, we first recall some important results on CBI processes from Dawson
and Li [10] and their link to affine term structure models from Filipović [18]. We
then use the CBI characterization to deduce the positivity condition and the limit
distribution properties of the α-CIR model.

3.1 Recall on CBI processes and affine property

The CBI processes have been introduced by Kawazu and Watanabe [27]. A Markov
process X with state space R+ is called a continuous state branching process with
immigration, characterized by a branching mechanism Ψ (·) and immigration rate
Φ(·), if its characteristic representation is given, for p ≥ 0, by

Ex[e−pXt ] = exp

(
−xv(t,p) −

∫ t

0
Φ

(
v(s,p)

)
ds

)
, (3.1)

where the function v :R+ ×R+ → R satisfies the differential equation

∂v(t,p)

∂t
= −Ψ

(
v(t,p)

)
, v(0,p) = p, (3.2)
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and Ψ and Φ are functions of the variable q ≥ 0 given by

Ψ (q) = βq + 1

2
σ 2q2 +

∫ ∞

0
(e−qu − 1 + qu)π(du),

Φ(q) = γ q +
∫ ∞

0
(1 − e−qu)ν(du),

with σ,γ ≥ 0 and β ∈ R. In addition, π and ν are two Lévy measures such that∫ ∞
0 (u ∧ u2)π(du) < ∞ and

∫ ∞
0 (1 ∧ u)ν(du) < ∞.

The α-CIR model (2.1) is a CBI process by considering its integral representation.

Proposition 3.1 (Dawson and Li [10, Theorem 3.1].) The α-CIR integral type pro-
cess r defined in (2.2) is a CBI process with the branching mechanism Ψ given by

Ψ (q) = aq + 1

2
σ 2q2 +

∫ ∞

0
(e−qσZζ − 1 + qσZζ )μ(dζ ) (3.3)

and the immigration rate Φ(q) = abq .

As a consequence, with the Lévy measure (2.3), the short rate r defined in (2.1) is
a CBI process with the branching mechanism given by

Ψα(q) = aq + σ 2

2
q2 − σα

Z

cos(πα/2)
qα (3.4)

and the immigration rate given by Φ(q) = abq .

Remark 3.2 The branching property can be interpreted in the following pathwise
sense as in [10, Theorem 3.2]. Let r

(i)
0 ∈ R+ and b(i) ∈ R, i ∈ {1,2}, be such that

r0 = r
(1)
0 + r

(2)
0 and b = b(1) +b(2). Then there exist independent processes r(i) in the

families α-CIR(a, b(i), σ, σZ,α) with initial values r
(i)
0 such that r = r(1) + r(2).

The link between CBI processes and affine term structure models has been estab-
lished in [18] (see also [19]). We recall the joint Laplace transform of a CBI process
and its integrated process, which has an exponential-affine structure depending on an
auxiliary function which solves a first order nonlinear ordinary differential equation
(ODE). This result will be useful for the bond pricing in the next section.

Proposition 3.3 (Filipović [18, Theorem 5.3]) Let X be a CBI (Ψ,Φ) process given
by (3.1) with X0 = x. For nonnegative real numbers ξ and θ , we have

Ex

[
e−ξXt−θ

∫ t
0 Xs ds

] = exp

(
−xv(t, ξ, θ) −

∫ t

0
Φ

(
v(s, ξ, θ)

)
ds

)
, (3.5)

where v(t, ξ, θ) is the unique solution of

∂v(t, ξ, θ)

∂t
= −Ψ

(
v(t, ξ, θ)

) + θ, v(0, ξ, θ) = ξ.
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3.2 Positivity and limit distribution of the α-CIR model

In the rest of this section, we use the CBI characterization to deduce some properties
of the α-CIR model. First, we show that the usual condition of inaccessibility of the
point 0 is preserved when we extend the CIR to an α-CIR model.

Proposition 3.4 For the α-CIR (a, b, σ,σZ,α) process with α ∈ (1,2), the point 0 is
an inaccessible boundary if and only if 2ab ≥ σ 2. In particular, a pure jump α-CIR
process with ab > 0 never reaches 0.

Proof We apply the result of Duhalde et al. [13, Theorem 2] for CBI processes to
obtain that 0 is an inaccessible boundary point for an α-CIR integral type process if
and only if ∫ ∞

θ

dz

Ψ (z)
exp

(∫ z

θ

Φ(x)

Ψ (x)
dx

)
= ∞

for some positive constant θ , where Ψ is given by (3.3) and Φ(q) = abq . We now
focus on the α-CIR process. Let Ψ ∗(q) = aq + σ 2q2/2 be the branching mechanism
of the classical CIR process viewed as a CBI process. We have Ψα ≥ Ψ ∗, where Ψα

is the branching mechanism of the α-CIR process, given in (3.4). Therefore
∫ ∞

θ

dz

Ψα(z)
exp

(∫ z

θ

Φ(x)

Ψα(x)
dx

)
≤

∫ ∞

θ

dz

Ψ ∗(z)
exp

(∫ z

θ

Φ(x)

Ψ ∗(x)
dx

)
.

In particular, if 0 is an inaccessible boundary for the α-CIR(a, b, σ,σZ,α) process,
then the inequality 2ab ≥ σ 2 holds, thanks to the classical inaccessibility criterion
for the CIR process.

Conversely, if the inequality 2ab ≥ σ 2 holds, then one has

Φ(x)

Ψα(x)
≥ 1

x

(
1 + O(xα−2)

)
as x → ∞.

So there exists some constant C > 0 (depending on θ ) such that
∫ z

θ

Φ(x)

Ψα(x)
dx ≥ log(z/θ) − C.

Hence ∫ ∞

θ

dz

Ψα(z)
exp

(∫ z

θ

Φ(x)

Ψα(x)
dx

)
� 1

eCθ

∫ ∞

θ

z

Ψα(z)
dz = ∞.

�

Remark 3.5 The result of Proposition 3.4 is not true when α = 2. In this case, the
α-CIR model reduces to a classic CIR model, but with a modified volatility term.
Therefore for the α-CIR(a, b, σ,σZ,2) process, the point 0 is an inaccessible bound-
ary if and only if 2ab ≥ σ 2 + 2σ 2

Z . We note that when the α-CIR process contains
the jump part, i.e., when α < 2, the parameter σZ does not intervene in the boundary
condition.
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The next result shows that the α-CIR process converges to the standard CIR model
as α tends to 2.

Proposition 3.6 Let r(α) = (r
(α)
t )t≥0 denote the α-CIR process with parameters

(a, b, σ,σZ,α). Then as α → 2, r(α) converges in distribution on D(R+) to the CIR
process r(2).

Proof The generator of a CBI process X is the operator L acting on C2
0(R+) given

by

Lf (x) = σ 2

2
xf ′′(x) + (γ − βx)f ′(x) + x

∫ ∞

0

(
f (x + u) − f (x) − uf ′(x)

)
π(du)

+
∫ ∞

0

(
f (x + u) − f (x)

)
ν(du). (3.6)

Let P (α) be the transition semigroup of the CBI process r(α) and A(α) its generator.
Denote ep(x) = e−px for p > 0 and x ≥ 0. Then by (3.6),

A(α)ep(x) = −ep(x)
(
xΨα(p) + Φ(p)

)

= −e−px

(
x
(
ap + σ 2

2
p2 − σα

Z

cos(πα/2)
pα

)
+ abp

)
.

We have

lim
α→2

sup
x∈R+

|A(α)ep(x) − A(2)ep(x)| = 0.

Denote by D1 the linear hull of {ep : p > 0}. Then D1 is an algebra which strongly
separates the points of R+. Let C0(R+) be the space of continuous functions on
R+ vanishing at infinity. By the Stone–Weierstrass theorem, D1 is dense in C0(R+).
Since D1 is invariant under P (2) by (3.1), it is a core of A(2) by Ethier and Kurtz [17,
Proposition 3.3]. Then using [17, Corollary 8.7], we have the weak convergence of
the processes as α tends to 2. �

Finally, we characterize the ergodic distribution of the α-CIR process. Note that
the first part of the following result was also shown in Keller-Ressel and Steiner [29,
Theorem 3.16] (see also [28]).

Proposition 3.7 The α-CIR integral type process defined in (2.2) has a limit distri-
bution, whose Laplace transform is given by

E[e−pr∞] = exp

(
−

∫ p

0

Φ(q)

Ψ (q)
dq

)
, p ≥ 0. (3.7)

Moreover, the process is exponentially ergodic, namely

‖P[rt ∈ · ] − P[r∞ ∈ · ]‖ � Cρt

for some positive constants C and ρ < 1, where ‖ ·‖ denotes the total variation norm.
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Proof The branching mechanism Ψ is bounded from below by aq + 1
2σ 2q2. Hence

one has ∫ 1

0

Φ(q)

Ψ (q)
dq �

∫ 1

0

abq

aq + 1
2σ 2q2

dq < ∞.

By [31, Theorem 3.20], we obtain that the process r defined in (2.2) has a limit
distribution, whose Laplace transform is given by exp(− ∫ ∞

0 Φ(v(t,p)) dt), where
the function v is defined in (3.2). A change of variables q = v(t,p) in the above
formula leads to (3.7). The last assertion follows from [32, Theorem 2.5]. �

4 Application to bond pricing

In this section, we apply the α-CIR model to interest rate modeling and pricing. Since
the α-CIR model admits the CBI properties, we give a closed-form expression of the
bond price thanks to the related affine term structure property in [18]. Moreover, we
focus on the behaviors of bond prices and bond yields. In particular, we analyze the
decreasing property of the bond prices with respect to the parameter α.

4.1 Zero-coupon bond pricing

We begin by making precise the equivalent probability measures. The following
proposition shows that the short interest rate r given by the α-CIR model remains
in the class of integral type processes under an equivalent change of probability.

Proposition 4.1 Fix T � large enough. Let r be an α-CIR(a, b, σ,σZ,α) process as
in (2.1) under the probability measure P and assume that the filtration F is generated
by the random fields W and Ñ . Fix η ∈R and θ ∈ R+ and define, for t ∈ [0, T �],

Ut := η

∫ t

0

∫ rs

0
W(ds, du) +

∫ t

0

∫ rs−

0

∫ ∞

0
(e−θζ − 1)Ñ(ds, du, dζ ).

Then the Doléans-Dade exponential E(U) is a martingale on [0, T �] and the proba-
bility measure Q defined by

dQ

dP

∣∣∣∣
FT �

= E(U)T �

is equivalent to P. Moreover, r is under Q an α-CIR integral type process as in (2.2)
with the parameters (a′, b′, σ ′, σ ′

Z,μ′
α), where

a′ = a − ση − ασZ

cos(πα/2)
θα−1, b′ = ab/a′, σ ′ = σ, σ ′

Z = σZ

and

μ′
α(dζ ) = − 1{ζ>0}e−θζ

cos(πα/2)Γ (−α)ζ 1+α
dζ.
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Proof The pair (r,U) is a time-homogeneous affine process (cf. [9, Theorem 6.2]).
The Doléans-Dade exponential E(U) is a true martingale by checking that the con-
ditions in [26, Corollary 3.2] are satisfied; so it defines an equivalent probabil-
ity measure Q. Note that Y = E(U) is the unique strong solution of the equation
dYt = Yt− dUt . Then for any function f ∈ C2(R+), the process

Ytf (rt ) −
∫ t

0
Ysf

′(rs)
(

ab −
(
a − ση − σZ

∫ ∞

0
ζ(e−θζ − 1)μα(dζ )

)
rs

)
ds

− σ 2

2

∫ t

0
Ysf

′′(rs)rs ds

−
∫ t

0
Ysrs ds

∫ ∞

0

(
f (rs− + σZζ ) − f (rs) − f ′(rs−)σZζ

)
e−θζ μα(dζ ), t ≥ 0

is a local martingale, which implies that r is under Q an α-CIR integral type process
with parameters (a′, b′, σ ′, σ ′

Z,μ′
α). �

Remark 4.2 Usually we choose η and θ such that a′ > 0. When θ = 0, μ′
α coincides

with μα given in (2.3), so that an α-CIR process will remain in the same class under
an equivalent change of probability. When θ > 0, the α-CIR process becomes an
α-CIR integral type process driven by a tempered stable process under the change of
probability measure. In this case, Proposition 3.3, which is on general CBI processes,
still allows to compute the bond prices.

In the following, we give the zero-coupon price as a consequence of Proposi-
tion 3.3. The short rate r is supposed to follow the α-CIR model of parameter
(a, b, σ,σZ,α) under the equivalent risk-neutral probability Q. Recall that the value
of a zero-coupon bond of maturity T at time t ≤ T is given by

B(t, T ) = E
Q

[
exp

(
−

∫ T

t

rs ds

) ∣∣∣∣Ft

]
.

Proposition 4.3 Let the short rate r be given by the α-CIR model (2.1) under the
probability measure Q. Then the zero-coupon bond price is given by

B(t, T ) = exp

(
−rtv(T − t) − ab

∫ T −t

0
v(s) ds

)
, (4.1)

where v(s) is the unique solution of the equation

∂v(t)

∂t
= 1 − Ψα

(
v(t)

)
, v(0) = 0, (4.2)

with Ψα(q) = aq + σ 2

2 q2 − σα
Z

cos(πα/2)
qα as in (3.4). Moreover, we have

v(t) = f −1(t), where f (t) =
∫ t

0

dx

1 − Ψα(x)
.



Alpha-CIR model with branching processes

Proof Applying (3.5) with ξ = 0 and θ = 1, we have

E
Q
[
e− ∫ T

t rs ds
∣∣Ft

] = exp

(
−rt v(T − t) − ab

∫ T −t

0
v(s) ds

)
,

where v(t) is the unique solution of (4.2) with Ψα given in (3.4). Since Ψα(·) is a
nonnegative, increasing and convex function, the equation Ψα(x) = 1 has a unique
positive solution denoted by x0. For 0 ≤ x < x0, 1 − Ψα(x) > 0. Note that f (u) is
strictly increasing in u ∈ [0, x0) and f (u) → ∞ as u → x0. It follows from (4.2) that

∫ v(t)

0

dv

1 − Ψα(v)
= t.

Let t tend to infinity on both sides of the above equality. Then v(t) → x0 as t → ∞
and v(t) < x0 for any t ≥ 0. Also by (4.2), v(t) is strictly increasing. So one has
v(t) = f −1(t). �

Remark 4.4 The bond price can also be obtained directly by using the generalized
Riccati equation as in Duffie et al. [11] and Keller-Ressel and Steiner [29]. Denote
A(x) := −ab

∫ x

0 v(s) ds and B(x) := −v(x). Then these satisfy the generalized Ric-
cati equations {

∂xA(x) = F(B(x)), A(0) = 0,

∂xB(x) = R(B(x)) − 1, B(0) = 0,

where the functions F and R are given by F(u) = abu and R(u) = Ψα(−u). The
bond price is then given as B(t, T ) = exp(A(T − t) + rtB(T − t)). We also consider
the quasi-mean-reversion which is defined as the solution of R(−1/λ) = 1 (cf. [29,
Definition 3.2]). From the proof of Proposition 4.3, we see that in the α-CIR model,
the quasi-mean-reversion parameter is given by λ = 1/x0, where x0 is the unique
positive solution of the equation Ψα(x) = 1.

4.2 Behaviors of bond price and bond yield

We now focus on the properties of the bond prices obtained in Proposition 4.3 and
the corresponding bond yield curves.

Proposition 4.5 The function v is increasing with respect to α ∈ (1,2]. In particular,
the bond price B(0, T ) is decreasing with respect to α.

Proof We write the function v as v(t, α) to emphasize the dependence on the param-
eter α. Since 1 −Ψα(u) is a decreasing concave function of u and Ψα(0) = 0, there is
a unique positive solution, denoted by v∗(α), to the equation 1 − Ψα(u) = 0. It is not
hard to see that 0 ≤ v(s,α) < v∗(α) and lims→∞ v(s,α) = v∗(α). Moreover, from
the relation 1 − Ψα(v∗(α)) = 0, we obtain that (σZv∗(α))α ≤ − cos(πα/2) ≤ 1 and
hence σZv∗(α) ≤ 1.
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For any t ∈R+, one has

t =
∫ v(t,α)

0

dx

1 − Ψα(x)
.

Taking the derivative with respect to α, we obtain

1

1 − Ψα(v(t, α))

∂v

∂α
(t, α) +

∫ v(t,α)

0

1

(1 − Ψα(x))2

∂Ψα

∂α
(x)dx = 0.

Note that by (3.4),

∂Ψα

∂α
(x) = − sin(πα/2)

cos2(πα/2)

π

2
(σZx)α − (σZx)α

cos(πα/2)
ln(σZx) ≤ 0

on x ∈ (0, v∗(α)], since σZv∗(α) ≤ 1 and cos(πα/2) < 0. Therefore we obtain
∂v/∂α ≥ 0, so that the function v is increasing with respect to α. In particular, the
bond price B(0, T ) is a decreasing function of α. �

Proposition 4.5 seems to be surprising at first sight since the parameter α is an
inverse measure of the heaviness of the distribution tails—the closer α to 1, the more
likely the large jumps appear (see also Sect. 5). In addition, in the α-CIR model, α

coincides with the so-called generalized Blumenthal–Getoor index, which is defined
as inf{β > 0 : ∑

0<s≤T �r
β
s < ∞ a.s.} with �rs := rs − rs− and T a time horizon

(see e.g. Aït-Sahalia and Jacod [2]) and is often used to measure the activity of the
small jumps in a semimartingale. When μα(du) is defined by (2.3), this index is
reduced to inf{β > 0 : ∫ T

0 rs ds
∫ 1

0 uβμα(du) < ∞ a.s.} and thus is equal to α. The
index α ∈ (1,2) shows that the jumps are of infinite variation. The explanation of
Proposition 4.5 is based on the self-exciting property discussed in Sect. 2.2. For the
compensated α-stable Lévy process Z in the α-CIR model (2.1), a smaller α is related
to a deeper (negative) compensation and hence a stronger mean-reversion. Then as
the interest rate becomes low because of the mean-reversion effect, the self-exciting
property will imply a decreasing frequency of jumps and enforce the tendency of low
interest rates.

Figure 2 plots the bond prices B(0, T ) given by (4.1) in Proposition 4.3. Besides
the three values of α of 2, 1.5 and 1.2, we also consider the bond price in the classic
CIR model (when σZ = 0). We observe, as already shown in Proposition 4.5, that
for a fixed maturity, the bond prices are decreasing with respect to the value of α,
with the lowest price in the CIR model. This observation means that compared to the
standard CIR model, the α-CIR model with α ∈ (1,2] allows to better describe the
low interest rate behavior from the point of view of bond pricing.

Remark 4.6 Extensions of the CIR model with jumps have already been considered
in the literature. For example, the following model for the risk-neutral short interest
rate is introduced in Duffie and Gârleanu [12] and then discussed in [18, 29]: they
consider

drJ
t = a(b − rJ

t ) dt + σ

√
rJ
t dBt + dJt , rJ

0 = r0,
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Fig. 2 Bond prices B(0, T ) as
function of the maturity T with
different values of α: blue line
for α = 2, green line for
α = 1.5, black line for α = 1.2
and in comparison with the CIR
model in red

where (Jt )t≥0 is a compound Poisson process with intensity c > 0 and exponentially
distributed jumps of mean m > 0. This model can provide positive jumps besides the
standard CIR model. But the bond prices obtained are in general smaller than those
in the CIR model, which means that it is difficult to reconcile the jumps with low
interest rates.

In a similar way as in [12], we consider a CIR model with jumps where the short
rate rL = (rL

t )t≥0 satisfies

drL
t = a(b − rL

t ) dt + σ

√
rL
t dBt + σZ dZ′

t , rL
0 = r0, (4.3)

with Z′ = (Z′
t )t≥0 being a Lévy process whose big jump behavior is similar to Z and

whose small jumps behave like an α − 1 Lévy subordinator (to ensure that the short
rate takes positive values and (4.3) is well defined). More precisely, Z′ is given by

E[e−qZ′
t ] = exp

(
−t

∫ ∞

0
(1 − e−qζ )μ′(dζ )

)

and the Lévy measure μ′(dζ ) is given by

μ′(dζ ) = − 1{ζ>0}(1 − e−ζ ) dζ

cos(πα/2)Γ (−α)ζ 1+α
, 1 < α < 2. (4.4)

The short rate rL in (4.3) is still a CBI process and admits the integral form

rL
t = r0 +

∫ t

0
a(b − rL

s ) ds + σ

∫ t

0

√
rL
s dBt + σZ

∫ t

0

∫ r0

0

∫ ∞

0
ζN(ds, du, dζ ),

(4.5)
where N(ds, du, dζ ) is a (non-compensated) Poisson random measure with intensity
ds duμ′(dζ ). In this model, the bond prices are no longer decreasing with respect to
the parameter α. Moreover, similarly as in a usual CIR model with jumps, the bond
prices are all lower than the CIR bond prices.



Y. Jiao et al.

We are interested in the behavior of the bond yields following [29]. From Propo-
sition 4.3, the zero-coupon yield Y(t, θ) is given by Y(t,0) := rt and

Y(t, θ) := −1

θ
logB(t, t + θ) = rt

v(θ)

θ
+ ab

∫ θ

0 v(s) ds

θ
, θ > 0.

The long-term yield, which is the asymptotic level of the yield curve when θ → ∞, is
given by basym = abx0, where x0 is the unique positive solution of Ψα(x) = 1 as in the
proof of Proposition 4.3. This result corresponds to the equality basymp = −F(−1/λ)

in [29, Theorem 3.7] (see Remark 4.4).
We can also have a closer look at the bond yield shapes. Let bnorm := ab/Ψ ′

α(x0)

and binv = b, and note that bnorm < binv. From [29, Theorem 3.9], we verify
that the yield curve Y(t, θ) is normal (i.e., strictly increasing with respect to θ )
when rt ≤ bnorm; humped (i.e., has one local maximum and no minimum) when
bnorm < rt < binv; and inverse (strictly decreasing with respect to θ ) when rt ≥ binv.

5 Analysis of jumps

This section is focused on the jump part of the short interest rate r . In particular, we
are interested in the large jumps which capture significant changes in the interest rate
dynamics.

5.1 Behavior of large jumps

Let us fix a jump threshold y = σZy > 0. In this subsection, we study the following
two quantities: the number of large jumps whose jump sizes are larger than y, and
the first large jump time. For this purpose, we separate the large and small jumps
and use the non-compensated version of the Poisson random measure in the integral
form (2.2). The small jumps with infinite activity can be approximated by a second
Brownian motion, for instance, in the spirit of Asmussen and Rosiński [4]. Then the
α-CIR process can be written in the form

rt = r0 +
∫ t

0
a

(
b − σZrsΘ(α,y)

a
− rs

)
ds + σ

∫ t

0

∫ rs

0
W(ds, du)

+ σZ

∫ t

0

∫ rs−

0

∫ y

0
ζ Ñ(ds, du, dζ )

+ σZ

∫ t

0

∫ rs−

0

∫ ∞

y

ζN(ds, du, dζ ),

where

Θ(α,y) = − 1

cos(πα/2)Γ (−α)

∫ ∞

y

dζ

ζ α
= 2

π
αΓ (α − 1) sin

(
πα

2

)(
y

σZ

)1−α
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and N is the (non-compensated) Poisson random measure corresponding to Ñ . Let

ã(α, y) = a + σZΘ(α,y), b̃(α, y) = ab

a + σZΘ(α,y)
. (5.1)

We introduce the auxiliary process which represents the truncated interest rate r ex-
cept for the jumps larger than y as

r̂
(y)
t = r0 +

∫ t

0
ã(α, y)

(
b̃(α, y) − r̂

(y)
s

)
ds + σ

∫ t

0

∫ r̂
(y)
s

0
W(ds, du)

+ σZ

∫ t

0

∫ r̂
(y)
s−

0

∫ y

0
ζ Ñ(ds, du, dζ ). (5.2)

For any jump threshold y > 0, the process r̂ (y) coincides with r up to the first large
jump time τy := inf{t > 0 : �rt > y}. The process r̂ (y) is a CBI process with the
branching mechanism given by

Ψ (y)
α (q) :=

(
a + σα

Z

∫ ∞

y

ζμα(dζ )

)
q + 1

2
σ 2q2 + σα

Z

∫ y

0
(e−qζ − 1 + qζ )μα(dζ )

(5.3)
and the immigration rate given by Φ(q) = ã(α, y)̃b(α, y)q = abq .

Let J
y
t denote the number of jumps of r with jump size larger than y in [0, t], i.e.,

J
y
t :=

∑
0<s≤t

1{�rs>y}.

Using the integral representation (2.2), we have

J
y
t =

∫ t

0

∫ rs−

0

∫ ∞

y/σZ

N(ds, du, dζ ) =
∫ t

0

∫ rs−

0

∫ ∞

y

N(ds, du, dζ ).

Since μα((0,∞)) = ∞, we have limy→0 J
y
t = ∞ a.s. In the following, we show

that the Laplace transform of this counting process is exponential-affine, where the
exponent coefficient satisfies a nonlinear ODE.

Proposition 5.1 Let r be an α-CIR(a, b, σ,σZ,α) process with initial value r0 ≥ 0.
Then for any p ≥ 0 and t ≥ 0,

E[e−pJ
y
t ] = exp

(
−�(p, y, t)r0 − ab

∫ t

0
�(p, y, s) ds

)
(5.4)

where �(p, y, t) is the unique solution of the equation

∂�(p, y, t)

∂t
= σα

Z

∫ ∞

y

(1 − e−p−�(p,y,t)ζ )μα(dζ ) − Ψ (y)
α

(
�(p, y, t)

)
(5.5)

with initial condition �(p, y,0) = 0 and Ψ
(y)
α given by (5.3).
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Proof Denote

F(q) := σα
Z

∫ ∞

y

μα(dζ ) − Ψ (y)
α (q), (5.6)

which is a decreasing concave function, and G(q) := σα
Z

∫ ∞
y

e−p−qζ μα(dζ ), which
is a decreasing convex function of q . Since p ≥ 0, one has F(0) ≥ G(0). Moreover,
for q large enough, F(q) < 0 < G(q). Thus there is a unique positive solution, de-
noted by �∗ > 0, to the equation

F(q) − G(q) = σα
Z

∫ ∞

y

(1 − e−p−qζ )μα(dζ ) − Ψ (y)
α (q) = 0.

One has F(q) − G(q) > 0 when 0 ≤ q < �∗, and F(q) − G(q) < 0 when q > �∗.
Moreover, Γ (�) := ∫ �

0
1

F(q)−G(q)
dq is an increasing function from [0, �∗) to [0,∞),

and its inverse function �(p, y, ·) : [0,∞) → [0, �∗) exists. We then have, for any
t ≥ 0, ∫ t

0

1

F(�(p,y, s)) − G(�(p,y, s))
d�(p, y, s) = t,

which implies (5.5). Since F(q) − G(q) is locally Lipschitz, the uniqueness follows.
The pair (J y, r) is an affine Markov process taking values in N0 × R+, where

N0 := {0,1, . . . }. By Duffie et al. [11, Theorem 2.7], the generator of (J y, r) acting
on a function f (x,n, t) is given by

Af (x,n, t)

= ∂f

∂t
(x,n, t) + a(b − x)

∂f

∂x
(x,n, t) + 1

2
σ 2x

∂2f

∂x2
(x,n, t)

+ σα
Zx

∫ y

0

(
f (x + ζ,n, t) − f (x,n, t) − ζ

∂f

∂x
(x,n, t)

)
μα(dζ )

+ σα
Zx

∫ ∞

y

(
f (x + ζ,n + 1, t) − f (x,n, t) − ζ

∂f

∂x
(x,n, t)

)
μα(dζ ),

where f (x,n, t) is differentiable with respect to t and twice differentiable with re-
spect to x, and the measure μα(dζ ) is defined by (2.3). Let p and θ be nonnegative
numbers and T ≥ 0 a time horizon. Then it follows again from [11, Theorem 2.7] that

E[e−pJ
y
T −θrT |Ft ] = exp

(
−C1(t)J

y
t − C2(t)rt − ab

∫ T −t

0
C2(s) ds

)
,

where
⎧⎨
⎩

C1(t) = p, t ≥ 0,

C′
2(t) = Ψ

(y)
α (C2(t)) + σα

Z

∫ ∞
y

(e−C2(t)ζ−C1(t) − 1)μα(dζ ) C2(0) = θ.

We fix p, y and let �(p, y, t) = C2(t). Then the special case θ = 0 leads to (5.4). �
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Now we consider the first time when the jump size of the short rate r is larger than
y = σZy, i.e.,

τy = inf{t > 0 : �rt > y}. (5.7)

We show that this random time also exhibits an exponential-affine cumulative distri-
bution function. The following result gives its distribution function as a consequence
of the above proposition.

Corollary 5.2 For any t ≥ 0, we have

P[τy > t] = exp

(
−�(y, t)r0 − ab

∫ t

0
�(y, s) ds

)
, (5.8)

where �(y, t) is the unique solution of the ODE

d�

dt
(y, t) = σα

Z

∫ ∞

y

μα(dζ ) − Ψ (y)
α

(
�(y, t)

)
(5.9)

with initial condition �(y,0) = 0 and Ψ
(y)
α given by (5.3).

Proof We have

P[τy > t] = P[J y
t = 0] = lim

p→∞E
[
e−pJ

y
t
]
. (5.10)

By Proposition 5.1, it suffices to prove that the limit function of �(p, y, t) when
p → ∞ is the unique solution to (5.9). For any q ≥ 0,

σα
Z

∫ ∞

y

(1 − e−p−qζ )μα(dζ ) − Ψ (y)(q) ≤ σα
Z

∫ ∞

y

μα(dζ ) − aq.

By (5.5) in Proposition 5.1, we obtain

�(p, y, t) ≤ σα
Z

a
(1 − e−at )

∫ ∞

y

μα(dζ ).

Moreover, �(p, x, t) is increasing with respect to p. So �(y, t) := limp→∞ �(p, y, t)

exists. Again by (5.5),

�(p, y, t) =
∫ t

0

(
σα

Z

∫ ∞

y

(1 − e−p−�(p,y,s)ζ )μα(dζ ) − Ψ (y)
α

(
�(p, y, s)

))
ds.

Since Ψ
(y)
α (q) is locally Lipschitz and e−p−�(p,y,s)ζ ≤ e−p , taking limit as p → ∞

on both sides of the above equation gives

�(y, t) =
∫ t

0

(
σα

Z

∫ ∞

y

μ(dζ ) − Ψ (y)
α

(
�(y, s)

))
ds,

which implies that the function �(y, t) is the unique solution to (5.9). We then con-
clude the proof by (5.10) and the monotone convergence theorem. �
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Remark 5.3 Corollary 5.2 has the alternative form

P[τy > t] = E

[
exp

(
−σα

Z

(∫ ∞

y

μα(dζ )
)(∫ t

0
r̂
(y)
s ds

))]
, (5.11)

where r̂ (y) is defined by (5.2). It shows that the distribution of the first jump time τy

can also be given by using the Laplace transform of the integrated auxiliary process
r̂ (y), evaluated on σα

Z

∫ ∞
y

μα(dζ ), that is, the mass of the Lévy measure whose jump

size is larger than y. The proof of (5.11) is based on the fact that r̂ (y) is a CBI process.
More precisely, for any θ > 0, we have

E
[
e−θ

∫ t
0 r̂

(y)
s ds

] = exp

(
�̂(θ, t)r0 − ab

∫ t

0
�̂(θ, s) ds

)
,

where �̂(θ, t) is the unique solution of

d�̂(θ, t)

dt
= θ − Ψ (y)

α

(
�̂(θ, t)

)

with �̂(θ,0) = θ . Then (5.8) can be rewritten in the form (5.11). When b = 0, (5.11)
recovers a result of He and Li [24, Theorem 3.2].

Proposition 5.4 We have P[τy < ∞] = 1. Furthermore,

E[τy] =
∫ �∗

y

0

1

F(u)
exp

(
−ur0 −

∫ u

0

abs

F (s)
ds

)
du < ∞, (5.12)

where �∗
y is the unique solution of the equation F(q) = 0 (with the function F defined

by (5.6)), which identifies with limt→∞ �(y, t), where the function �(y, t) is given by
(5.9).

Proof We note as in the proof of Proposition 5.1 that F is a decreasing concave func-
tion and F(0) > 0. Hence the equation F(q) = 0 admits a unique positive solution,
denoted as �∗

y > 0. One has F(q) > 0 when q ∈ [0, �∗
y). By (5.9),

∫ �(y,t)

0

1

F(q)
dq = t, (5.13)

which implies that 0 ≤ �(y, t) < �∗
y for any t ≥ 0. Then �(y, t) is strictly increasing

in t . Letting t tend to ∞ in (5.13), we deduce that limt→∞ �(y, t) = �∗
y > 0. Then∫ ∞

0 �(y, s) ds = ∞. Hence by Corollary 5.2, P[τy = ∞] = 0.
For the expectation, note that E[τy] = ∫ ∞

0 P[τy > t]dt . Then by Corollary 5.2,

E[τy] =
∫ ∞

0
exp

(
−�(y, t)r0 − ab

∫ t

0
�(y, s) ds

)
dt

=
∫ �∗

y

0

1

F(u)
exp

(
−ur0 −

∫ u

0

abs

F (s)
ds

)
du,
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Fig. 3 (Left) Probability P[τy > t] with different values of α: blue line for α = 1.8, green line for α = 1.5,
black line for α = 1.2. (Right) Expectation of the first jump time τy of the short rate r whose jump size
is larger than y with different values of y: blue line for y = 0.05, green line for y = 0.1, black line for
y = 0.2

where the second equality follows from (5.9). Since F is decreasing, F ′(�∗
x) < 0 and

by concavity,

1

F(u)
exp

(
−ur0 −

∫ u

0

abs

F (s)
ds

)

∼ c

F ′(�∗
y)(u − �∗

y)
exp

(
−ur0 −

∫ u

0

abs

F ′(�∗
y)(s − �∗

y)
ds

)

for some constant c > 0, where A(u) ∼ B(u) means that the quotient B(u)/A(u)

tends to 1 as u → �∗
y . Then E[τy] < ∞ follows from

∫ �∗
y

0

1

F ′(�∗
y)(u − �∗

y)
exp

(
−ur0 −

∫ u

0

abs

F ′(�∗
y)(s − �∗

y)
ds

)
du < ∞. �

We illustrate in Fig. 3 the behaviors of the first large jump time τy where the short
rate process exceeds y. The parameters are a = 0.1, b = 0.1, σ = 0.1, σZ = 0.1,
r0 = 0.2 and y = 0.1. The first graph shows the probability P[τy > t], given by (5.8)
in Corollary 5.2, as a function of t for different values of α. We see that this proba-
bility converges to 0 very quickly for smaller values of α, and much more slowly for
larger values of α. In particular, when α is equal to 2, the convergence time will tend
to infinity for a CIR process. The second graph illustrates the expectation of τy as a
function of α, which is given by (5.12) in Proposition 5.4. The expected jump time is
increasing with α. Both graphs show that for a smaller α, the first large jump is likely
to occur sooner.

5.2 Jump behavior of the locally equivalent model and comparison

In this subsection, we consider the behaviors of the first large jump in the model (4.3)
and make a comparison with the α-CIR model. By comparing (4.5) and (2.2), we
note that the difference lies in the integral interval in the jump term which is fixed at
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the initial value r0 in (4.5), while adapted to the current level of the interest rate rt
in (2.2).

Proposition 5.5 Let τL
y := inf{t > 0 : �rL

t > y} denote the first time when the jump

size of the locally equivalent process rL is larger than y. Then

P[τL
y > t] = exp

(
−r0μ

′((y,∞)
)
t
)
, (5.14)

where μ′(ζ ) is given by (4.4). Moreover, we have the asymptotic tail probability of
maximal jump when y goes to ∞ as

ML(t, y) := P

[
sup

0<s≤t

�rL
s > y

]
∼ Cαr0t y−α,

where Cα := 2
π
Γ (α) sin(πα/2).

Proof By (4.5), we have

P[τL
y > t] = P

[∫ t

0

∫ r0

0

∫ ∞

y

N(ds, du, dζ ) = 0

]
,

where y = y/σZ . Then (5.14) is obtained by a direct integration. The asymptotic tail
is a consequence of the equality P[sup0<s≤t �rL

s > y] = 1 − P[τL
y < t] and the fact

that μ′((y,∞)) ∼ Cαy−α as y goes to ∞. �

In a similar way, for the α-CIR process, we have the following result.

Proposition 5.6 The distribution function of the first large jump τy of the α-CIR
process r defined in (5.7) satisfies the inequality

P[τy ≤ t] ≤ Cα y−α

(
b̃(α, y)t + r0 − b̃(α, y)

ã(α, y)
(1 − e−ã(α,y)t )

)
,

where ã(α, y) and b̃(α, y) are given by (5.1). Moreover, as y goes to ∞, we have

Mr (t, y) := P

[
sup

0<s≤t

�rs > y
]

∼ Cα

(
bt + r0 − b

a
(1 − e−at )

)
y−α.

Proof For the α-CIR process, applying (5.11), we have

P[τy > t] = E

[
exp

(
−Cαy−α

∫ t

0
r̂
(y)
s ds

)]
. (5.15)
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Note that E[̂r(y)
t ] = b̃(α, y)(1 − e−ã(α,y)t ) + r0e

−ã(α,y)t . Thus by (5.15), we obtain
the inequality by convexity. For the asymptotic tail, by (5.9), we have

�(y, t) = σα
Z

∫ ∞

y

μα(dζ )

∫ ∞

0
e−a(t−s) ds − σα

Z

∫ ∞

y

ζμα(dζ )

∫ t

0
e−a(t−s)�(y, s) ds

− σ 2

2

∫ t

0
e−a(t−s)�2(y, s) ds −

∫ t

0
e−a(t−s)Ψ

(y)

α

(
�(y, s)

)
ds, (5.16)

where Ψ
(y)

α (q) = σα
Z

∫ y

0 (e−qζ − 1 + qζ )μα(dζ ). This also shows that

�(y, t) ≤ − σα
Z

a cos(πα/2)αΓ (−α)
(1 − e−at )y−α = Cα

σα
Z

a
(1 − e−at )y−α (5.17)

since −(α cos(πα/2)Γ (−α))−1 = Cα . By (5.16), we also have

yα�(y, t) = − σα
Z

α cos(πα/2)Γ (−α)

∫ t

0
e−a(t−s) ds

+ σα
Z

(α − 1) cos(πα/2)Γ (−α)
y−1

∫ t

0
e−a(t−s)�(y, s) ds

− σ 2

2

∫ t

0
e−a(t−s)�2(y, s)yα ds −

∫ t

0
e−a(t−s)Ψ

(1)

α

(
y �(y, s)

)
ds.

This implies, by combining with (5.17), that as y → ∞,

yα�(y, t) −→ − σα
Z

α cos(πα/2)Γ (−α)

∫ t

0
e−a(t−s) ds = Cασα

Z

1 − e−at

a
. (5.18)

Furthermore, this convergence is locally uniform in t . By Corollary 5.2,

P

[
sup

0<s≤t

�rs > y
]

= P[τy ≤ t] = 1 − e−�(y,t)r0−ab
∫ t

0 �(y,s) ds

∼ �(y, t)r0 + ab

∫ t

0
�(y, s) ds.

We have the tail of the jump of r by (5.18). �

Remark 5.7 Comparing ML and Mr , we have that when t goes to 0, the two asymp-
totic tail probabilities coincide, whereas when t is large enough, Mr is approximately
proportional to the long term interest rate b.

Remark 5.8 We have noted that for 0 < t < τy , rt = r̂
(y)
t . Then for any T ,

sup
0≤t≤T

∣∣∣∣E
[

exp

(
−

∫ t

0
rs ds

)]
− E

[
exp

(
−

∫ t

0
r̂
(y)
s ds

)]∣∣∣∣
≤ 2P[τy ≤ T ] = P

[
sup

0<s≤T

�rs > y
]
.
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By Proposition 5.5, one has P[sup0<s≤T �rs > y] ∼ C(T )y−α , where C(T ) is a con-
stant depending on T . This means that as y → ∞, r can be approximated by r̂ (y) with
rate y−α . In the approximation sense, we see the role of the big jumps which leads to
the additional negative drift term shown in (5.2) and forces the interest rate to remain
at a low level as α decreases to 1.
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