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Abstract

We model in a dynamic way an insider’s private information flow which is successively aug-
mented by a family of initial enlargement of filtrations. According to the a priori available
information, we propose several density hypotheses which are presented in hierarchical order
from the weakest one to the stronger ones. We compare these hypotheses, in particular, with
the Jacod’s one, and deduce conditional expectations under each of them by providing con-
sistent expressions with respect to the common reference filtration. Finally, this framework is
applied to a default model with insider information on the default threshold and some numerical
illustrations are performed.
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1 Introduction

Modeling information is a crucial subject in financial markets. The mathematical tool is based
on the theory of initial enlargement of filtration by a random variable, which has been developed
by the French school in the 70’s-80’s by Jacod [17, 18], Jeulin [19], Jeulin and Yor [21], etc.
This theory receives a new focus in the 90’s for its application in finance notably for problems
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occurring in insider modeling. When there is an insider, her information is often modeled by
the enlargement of the common information filtration by the insider’s private information and we
investigate problems such as the existence of arbitrage or the value of private information, see e.g.
Grorud and Pontier [12], Amendinger, Imkeller and Schweizer [2] and Imkeller [16]. Classically in
these above papers, the extra information L is revealed at the initial time but does not evolve or
get more accurate through time.

In this present paper, our aim is to generalize previous works and consider an insider who can
adjust her extra information with time. Let ti, (i = 1, ..., n) be a family of discrete times and Li be
random variables modeling the extra information available at time ti. The insider’s information,
which is modeled by the filtration GI , is given by the successive initial enlargement at time ti by the
random variable Li. In [12] and [1], Jacod’s hypothesis or the so-called density hypothesis, which
assumes the equivalence between the conditional law of L with respect to the common reference
filtration and the law of L, plays an important role. It implies in particular the existence of an
equivalent martingale measure and thus No Free Lunch with Vanishing Risk. Moreover, following
Föllmer and Imkeller [11], it has been constructed in [12] an equivalent martingale measure under
which the reference filtration is independent to the random variable L. Our methodology consists
of generalizing these properties in the framework of successive initial enlargement. We propose
several density hypotheses in a hierarchical order. We show that if a density hypothesis is sup-
posed at each step between the conditional laws of Li with respect to the previous information at
different times, we obtain families of probability measures with nice properties. Indeed, under this
successive density hypothesis, we construct a family of probabilities Pi, i = 1, ..., n which decouple
at time ti the random variable Li and GI

t−i
the available information up to time t−i . However,

this first family obtained by a natural induction does not preserve at time ti the law of the next
random variables Lk, i < k ≤ n. To overcome this inconvenience, we propose a second family
of probability measures Qi, i = 1, ..., n constructed by a backward change of probability measure.
Then, we focus on conditional expectation with successive information. The use of the family
Qi allows to obtain an evaluation formula in terms of F-conditional expectations where F is the
common reference information. Our approach, although less general than the local method solu-
tion approach introduced by Song [26, 27], provides nevertheless tractable formulas in particular
for the computation of conditional expectation, which are useful for financial applications. From
this successive density hypothesis, we derive in addition stronger formulations where the a priori
available information concerns the non-trivial or trivial initial σ-algebra, which are more similar
to the classical density hypothesis of Jacod in initial enlargement framework. Moreover, another
point of view is to consider a global initial enlargement of the reference filtration F by the random
vector L = (L1, ..Ln) and a density hypothesis between the conditional law of L and the law of L.
We investigate the link between the global approach and the successive approach.

The application in finance generalizes the default model in Hillairet and Jiao [14] to a dynamic
setting. The default time is supposed to be the first time where the firm value reaches a random
threshold chosen by the manager of the firm and adjusted dynamically. In literature, another
“dynamic” enlargement of filtrations have been introduced by Corcuera et al. [7] where the private
information is affected by an independent noise process vanishing as the revelation time approaches.
Kchia, Larsson and Protter [23, 22] have studied a progressive filtration expansions with a càdlàg
processes. To compare the survival probability for different informations, we introduce the standard
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information available by an agent in credit risk given by the progressive enlargement which has
been studied among others, by Jeulin and Yor [20], Mansuy and Yor [24] and Bielecki, Jeanblanc
and Rutkowski (e.g [5, 4]) for its application in finance and credit risk. Using our successive
enlargement framework, we obtain explicit formulations for the survival probability of the insider
and compare the results with those of standard investors by numerical illustrations. Finally we
note a strain of related literature dealing with initial enlargement and the information drift such as
applying Malliavin’s calculus by Imkeller [15, 16], or using forward anticipative calculus by Biagini
and Øksendal [3], which provide other perspectives to study the insider information.

The paper is organized as follows. We present the model framework in Section 2. Section 3
introduces the successive density hypothesis and proposes two constructions of auxiliary probability
measures to compute conditional expectations. Then, Section 4 considers several particular cases
of the successive density framework and makes comparisons. Finally Section 5 applies this insider
information framework to a default model and performs some numerical illustrations.

2 Model framework

Let (Ω,A,P) be a probability space equipped with a reference filtration F = (Ft)0≤t≤T which
satisfies the usual conditions and represents the common information flow on financial market,
where T is a finite time horizon. The insider has knowledge of extra information which are
revealed dynamically with time. Let {ti, i = 1, · · · , n} be a family of discrete times1 such that
0 = t1 < · · · < tn < T . By convention we set tn+1 = T .The insider’s information is described
by a family of random variables {Li, i = 1, · · · , n} where Li is A-measurable and takes values in
a Polish space E whose Borel σ-algebra is denoted by E . The insider gets the information on Li

at time ti, so the total information flow of the insider is described by the filtration GI = (GIt )t≥0
where

(2.1) GIt := Ft ∨ σ(L1) ∨ · · · ∨ σ(Li), t ∈ [ti, ti+1).

We can interpret this information flow in two different but equivalent ways by using the theory
of enlargement of filtrations. On the one hand, for any t ∈ [0, T ], we can define an extra information
process as

(2.2) Lt =
n∑
i=1

Li11[ti,ti+1)(t)

then we have GIt = Ft ∨ σ(Ls, s ≤ t). The filtration GI is the progressive enlargement of the
filtration F by the information process L. On the other hand, let us define a family of filtrations
Gi = (Git)t≥0, for all i = 1, · · · , n, where

(2.3) Git := Ft ∨ σ(L1) ∨ · · · ∨ σ(Li), t ∈ [0, T ].

1The case of random times ti will be done in a future work.
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By definition, we have GIt = Git for t ∈ [ti, ti+1) and Git = Gi−1t ∨ σ(Li), where we set by
convention G0t = Ft. Each filtration Gi is the initial enlargement of the filtration Gi−1 by the
random variable Li. We thus obtain an increasing family of successive initial enlargement of
filtrations.

We denote by L the n dimensional random vector (L1, · · · , Ln). For any i = 1, · · · , n, let
L(i) := (L1, · · · , Li). Similarly, we use the expression x to denote a vector (x1, · · · , xn) in En,
and let x(i) := (x1, · · · , xi). For any t ∈ [0, T ], the σ-algebra Git is generated by Ft and σ(L(i)).
Therefore any Gi-adapted process can be written in the form (Yt(L

(i)), 0 ≤ t ≤ T ) where Yt(·) is
Ft ⊗ E⊗i-measurable (c.f. Jeulin [19, Lemma 3.13]).

In the classical framework of initial information modeling, the insider obtains the extra infor-
mation at the initial time t = 0 and keeps it until the final time T . This corresponds in our setting
to the case where n = 1 and GIt = G1t for all t ∈ [0, T ].

In the enlargement of filtration theory, the conditional laws of Li with respect to different
filtrations play an important role. For a random variable X taking values in the Polish space
E and a sub-σ-algebra B of A, we denote by P(X ∈ · | B) a regular version of the conditional
probability law of X with respect to B. By definition, it is a map from Ω× B to [0, 1] such that

(1) for almost ω ∈ Ω , P(X ∈ · | B)(ω) is a probability measure on (E, E);

(2) for any Borel set S in E, the function P(X ∈ S | B) on Ω is B-measurable, and is P-a.s. equal
to the B-conditional expectation EP[11S(X) | B].

3 Successive density hypothesis

In order to study the dynamic properties of the filtration GI , we introduce the following successive
density hypothesis, which asserts that the terminal conditional law of Li is equivalent to its Gi−1ti

-
conditional law. This hypothesis is slightly different from Jacod’s hypothesis in [18] for the initial
enlargement of filtration. The key point is that we take into account the insider’s information in
a progressive manner at each time step.

Assumption 1 For any i ∈ {1, · · · , n}, the Gi−1T -conditional law of Li is equivalent to its Gi−1ti
-

conditional law under the probability P, namely there exists a positive Gi−1T ⊗E-measurable function

α
i|i−1
T (L(i−1), ·) such that

(3.1) P(Li ∈ dx | Gi−1T ) = α
i|i−1
T (L(i−1), x )P(Li ∈ dx | Gi−1ti

) a.s..

Remark 3.1 1) In the above assumption, we actually consider the density α
i|i−1
T (L(i−1), ·) as an

(FT ⊗ E⊗i−1) ⊗ E-measurable function α
i|i−1
T (·, ·) evaluated at L(i−1). Note that such repre-

sentation needs not to be unique. More precisely, there may exist another (FT ⊗ E⊗i−1) ⊗ E-

measurable function α̃
i|i−1
T (·, ·) such that α̃

i|i−1
T (x(i−1), x) is not identically equal to α

i|i−1
T (x(i−1), x)

for (x(i−1), x) ∈ Ei but α̃
i|i−1
T (L(i−1), x) = α

i|i−1
T (L(i−1), x). We refer the readers to [25] for
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a general discussion on the stochastic process depending on a parameter, see also [9, §3.2] for
more details on the link with such conditional density processes.

2) In Jacod’s hypothesis (see [18]), it is assumed that the Gi−1t -conditional law of Li is equivalent to
its probability law where t ∈ R+. Rather than assuming Assumption 1 for P(Li ∈ dx | Gi−1t ), in
our setting, we consider a finite terminal time horizon T . The main difference here with Jacod’s
hypothesis is that the conditional law P(Li ∈ dx | Gi−1ti

) itself is a random measure instead of a
deterministic probability law. Therefore, it is difficult to apply Jacod’s method [18, Lemma 1.8]
to prove the existence of a martingale version of the density process. Our choice of working with
the terminal time T allows to overcome this difficulty. In fact, Assumption 1 implies that, for
any t ∈ [ti, T ], the Gi−1t -conditional law of Li under P is equivalent to the Gi−1ti

-conditional law

of Li. Moreover, the Gi−1t ⊗ E-measurable function EP[α
i|i−1
T (L(i−1), x) | Gi−1t ] gives the density

of P(Li ∈ dx | Gi−1t ) with respect to P(Li ∈ dx | Gi−1ti
), which we denote as α

i|i−1
t (L(i−1), ·). We

refer the reader to Corollary 3.5 for details.

3) Under Assumption 1, similar as in Amendinger [1, Proposition 3.3], the filtration Gi is right-
continuous on [ti, T ], and also is GI on [0, T ], so all conditional expectations are taken with
respect to right-continuous filtrations.

3.1 One step enlargement of filtration

The filtration GI can be considered as a step-by-step enlargement of F. Also the successive density
hypothesis has an inductive nature. In this subsection, we focus on one step of the enlargement
and develop tools which will be useful in the inductive study of GI .

Let (Ω,A,P) be a probability space and H = (Hu)u∈[t,T ] be a filtration of A, where t is a fixed
real number such that 0 ≤ t < T . Let X be an A-measurable random variable which takes value
in a Polish space (E, E). We assume that there exists a positive HT ⊗E-measurable function qT (·)
such that

(3.2) P(X ∈ dx |HT ) = qT (x)P(X ∈ dx |Ht).

We denote the conditional distribution νt(dx) := P(X ∈ dx |Ht).

Example 3.2 We give a simple but illustrative example which satisfies the hypothesis (3.2) but
not Jacod’s hypothesis. Let Y1 and Y2 be two independent random variables which both follow the
standard normal distribution. Let X = max(Y1, Y2). We consider the filtration H = (Hu)u∈[t,T ]
such that Hu = σ(Y1) for all u ∈ [t, T ]. It is clear that the HT -conditional law of X has a density
w.r.t. the Ht-conditional law, which equals to the constant 1. However it is not true that this
conditional law is absolutely continuous w.r.t. the probability law of X. In fact, if we denote
respectively by Φ and φ the probability distribution function and the probability density function
of the standard normal distribution, then the probability law of X has the probability density
2Φφ. However, the σ(Y1)-conditional law of X is Φ(Y1)δY1(du) + 11[Y1,+∞)φ(u)du, which is not
absolutely continuous w.r.t. the Lebesgue measure. This is a typical situation which we can not
handle within the classical framework of Jacod’s density hypothesis.
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Remark 3.3 The condition (3.2) is invariant under a change of probability measure. Indeed, if
P′ is an equivalent probability measure with respect to P with dP′/dP = QT (X) on HT ∨ σ(X),
where QT (·) is a positive HT ⊗E-measurable function, then for any non-negative Borel function f
on E,

EP′ [f(X) |HT ] =
EP[f(X)QT (X) |HT ]

EP[QT (X) |HT ]
=

∫
E f(x)QT (x)qT (x) νt(dx)∫
E QT (x)qT (x) νt(dx)

.

where νt(dx) = P(X ∈ dx |Ht). Moreover, let Qt(·) be a Ht ⊗ E-measurable function such that
Qt(X) = EP[QT (X)|Ht ∨σ(X)], then Qt(X) is the Radon-Nikodym density dP′/dP on Ht ∨σ(X),
and hence

EP′ [f(X) |Ht] =
EP[f(X)Qt(X) |Ht]

EP[Qt(X) |Ht]
=

∫
E f(x)Qt(x) νt(dx)∫
E Qt(x) νt(dx)

.

Therefore P′(X ∈ · |HT ) is absolutely continuous with respect to P′(X ∈ · |Ht), and the corre-
sponding density is given by

(3.3) q′T (·) = qT (·) QT (·)
Qt(·)

∫
E Qt(x) νt(dx)∫

E QT (x)qT (x) νt(dx)
.

Note that, if X and HT are P-conditionally independent given Ht, then we can choose Qt(·) to be

Qt(·) := EP[QT (·) |Ht].

Let G = (Gu)u∈[t,T ] denote the initial enlargement of H with X, i.e., Gu = Hu ∨ σ(X). By using
the conditional density, one can construct a probability measure equivalent to P under which the
random variable X and the filtration H are conditionally independent given Ht.

Proposition 3.4 Under hypothesis (3.2), there exists an equivalent probability measure Q with
respect to P such that

1) Q coincides with P on H,

2) X and H are conditionally independent under Q given Ht,

3) X has the same conditional law given Ht under P and Q.

Moreover, the probability measure Q is unique on GT and given by dQ
dP
∣∣
GT

= qT (X)−1.

We emphasize that, although the result has a form similar as in Föllmer and Imkeller [11] and
Grorud and Pontier [12], under our hypothesis it is in general not possible to expect the indepen-
dence between X and the filtration H under an equivalent probability measure.

Proof: By taking the expectation of a conditional expectation, we have

EP[qT (X)−1] = EP[EP[qT (X)−1|HT ]] = EP
[ ∫

E
qT (x)−1 νT (dx)

]
.
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The hypothesis (3.2) thus leads to

EP[qT (X)−1] = EP
[ ∫

E
qT (x)−1qT (x) νt(dx)

]
= 1.

Let Q be the probability measure on (Ω,A) defined by dQ/dP = qT (X)−1. If f is a non-negative
Borel function on E, ZT a non-negative HT -measurable random variable and Yt a non-negative
Ht-measurable random variable, then a direct computation shows

EQ[f(X)ZTYt] = EP[f(X)qT (X)−1ZTYt] = EP
[
ZTYt

∫
E
f(x)qT (x)−1 νT (dx)

]
= EP

[
ZTYt

∫
E
f(x) νt(dx)

]
= EP

[
EP[ZT |Ht]YtEP[f(X) |Ht]

]
.

(3.4)

If we take ZT to be the constant 1, we obtain that the conditional law of X under P and Q given
Ht coincide. If we take f and Yt to be the constant function 1, we obtain that P and Q coincide
on HT . Therefore the relation (3.4) implies that

EQ[f(X)ZT |Ht] = EQ[f(X) |Ht]EQ[ZT |Ht],

namely σ(X) and H are conditionally independent given Ht.

For the unicity of the probability measure Q on GT , it suffices to observe that, for any positive
GT -measurable random variable YT (X) one has

EQ[YT (X)] = EQ
[ ∫

E
EQ[YT (x) |Ht]Q(X ∈ dx |Ht)

]
by using the conditional independence of H and σ(X) given Ht. Since the probability measures P
and Q coincide on H and the conditional probability laws of X given Ht with respect to P and Q
coincide, one obtains

EQ[YT (X)] = EP
[ ∫

E
EP[YT (x) |Ht]P(X ∈ dx |Ht)

]
= EP

[ ∫
E
YT (x)P(X ∈ dx |Ht)

]
= EP

[ ∫
E
YT (x)qT (x)−1 P(X ∈ dx |HT )

]
= EP[YT (X)qT (X)−1].

Therefore the Radon-Nikodym density of Q with respect to P on GT should be qT (X)−1. 2

Corollary 3.5 For any u ∈ [t, T ], the Hu-conditional law of X is equivalent to the Ht-conditional
law of X under the probability P. Moreover, if qu(·) is a positive Hu ⊗ E-measurable function on
Ω× E such that qu(x) = EP[qT (x) |Hu] P-a.s., then one has

P(X ∈ dx |Hu) = qu(x)P(X ∈ dx |Ht).

In particular, the Radon-Nikodym derivative of the probability measure Q defined in the previous
proposition with respect to P is given by qu(X)−1 on Hu for u ∈ [t, T ].
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Proof: Let Q be the probability measure on A defined by dQ/dP = qT (X)−1. By Proposition
3.4, for any u ∈ [t, T ], we obtain

(3.5) Q(X ∈ · |Hu) = Q(X ∈ · |Ht) = P(X ∈ · |Ht).

Moreover, for any non-negative Borel function f on E one has

(3.6)

∫
E
f(x)P(X ∈ dx |Hu) = EP[f(X) |Hu] =

EQ[f(X)qT (X) |Hu]

EQ[qT (X) |Hu]
.

Note that

EQ[f(X)qT (X) |Hu] = EQ
[ ∫

E
f(x)qT (x)Q(X ∈ dx |HT )

∣∣∣Hu]
= EQ

[ ∫
E
f(x)qT (x) νt(dx)

∣∣∣Hu] = EQ
[ ∫

E
f(x) νT (dx)

∣∣∣Hu],(3.7)

where the second equality comes from (3.5) and we recall νt(dx) = P(X ∈ dx |Ht). In addition,
we have from (3.7) that

(3.8) EQ[f(X)qT (X) |Hu] =

∫
E
f(x)EQ[qT (x)|Hu] νt(dx) =

∫
E
f(x)qu(x)νt(dx)

since Q and P coincide on H. In particular, when f is the constant function 1, (3.7) shows that

EQ[qT (X) |Hu] = 1.

Therefore by (3.6) and (3.8), we obtain∫
E
f(x)P(X ∈ dx |Hu) =

∫
E
f(x)qu(x)P(X ∈ dx |Ht),

namely qu(·) is the density of νu(dx) with respect to νt(dx). 2

3.2 Change of probability measures

We now come back to the successive enlargements under Assumption 1. In this subsection and
the next one, we introduce two different ways to construct equivalent probability measures, which
will play an important role in further applications.

We recall that for any x ∈ E and t ∈ [ti, T ], α
i|i−1
t (L(i−1), ·) is defined as the conditional

expectation:

α
i|i−1
t (L(i−1), x) = EP[α

i|i−1
T (L(i−1), x) | Gi−1t ].

By Corollary 3.5, we have

(3.9) P(Li ∈ dx | Gi−1t ) = α
i|i−1
t (L(i−1), x)P(Li ∈ dx | Gi−1ti

).

We now introduce a family of probability measures equivalent to P by using Proposition 3.4 in
a recursive manner.
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Definition 3.6 Let P0 := P, and for any i ∈ {1, · · · , n}, let Pi be the probability measure on
(Ω,A) such that

(3.10)
dPi

dPi−1
=

1

α
i|i−1
T (L(i))

.

Obviously α
i|i−1
T (L(i)) = α

i|i−1
T (L(i−1), Li). For any x(i) ∈ Ei, let

(3.11) ψit(x
(i)) :=

i∏
k=1

1

α
k|k−1
t (x(k))

, t ∈ [ti, T ].

We show in Proposition 3.7 below that the probability measures (Pi)ni=1 are well defined and
the Radon-Nikodym density of Pi with respect to P is equal to ψit(L

(i)) on Git .

Proposition 3.7 The probability measures (Pi)ni=1 are well defined and equivalent to P. For any
i ∈ {1, . . . , n},

1) the probability measures Pi and Pi−1 coincide on Gi−1T , in particular, all probability measures
(Pi)ni=1 coincide with P on FT ,

2) L(i) and FT are conditionally independent given Fti under Pi,

3) for any t ∈ [ti, T ], the Radon-Nikodym density of Pi w.r.t. Pi−1 is given by [α
i|i−1
t (L(i))]−1 on

Git and hence the Radon-Nikodym density of Pi w.r.t. P is equal to ψit(L
(i)) on Git.

Proof: We prove the proposition by induction on i. The case when i = 1 is true by Proposition
3.4. Suppose that the equivalent probability measures P1, · · · ,Pi−1 are well defined and verify the
properties asserted by the proposition. Moreover, Assumption 1 holds for the probability measure
Pi−1 by Remark 3.3. More precisely, the conditional law Pi−1(Li ∈ · | Gi−1T ) is absolutely continuous
w.r.t. Pi−1(Li ∈ · | Gi−1ti

), and the corresponding density is

α
i|i−1
T (L(i−1), · )

ψi−1T (L(i−1))

EP[ψi−1T (L(i−1)) | Gi−1ti
]

∫
E EP[ψi−1T (L(i−1)) | Gi−1ti

]P(Li ∈ dx | Gi−1ti
)∫

E α
i|i−1
T (L(i−1), x)ψi−1T (L(i−1))P(Li ∈ dx | Gi−1ti

)
,

which is equal to α
i|i−1
T (L(i−1), · ), since

ψi−1T (L(i−1)) =

∫
E
α
i|i−1
T (L(i−1), x)ψi−1T (L(i−1))P(Li ∈ dx | Gi−1ti

)

and

EP[ψi−1T (L(i−1)) | Gi−1ti
] =

∫
E
EP[ψi−1T (L(i−1)) | Gi−1ti

]P(Li ∈ dx | Gi−1ti
).

We now show that (3.10) effectively defines a probability measure Pi. One has

EPi−1
[α
i|i−1
T (L(i))−1 | Gi−1ti

] =
EP[α

i|i−1
T (L(i))−1ψi−1T (L(i−1)) | Gi−1ti

]

EP[ψi−1T (L(i−1)) | Gi−1ti
]

.
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The assumption (3.1) applied to Li and Gi−1 leads to

EP[α
i|i−1
T (L(i))−1ψi−1T (L(i−1)) | Gi−1ti

]

= EP
[
ψi−1T (L(i−1))

∫
E
α
i|i−1
T (L(i−1), x)−1α

i|i−1
T (L(i−1), x)P(Li ∈ dx | Gi−1ti

)
∣∣∣Gi−1ti

]
= EP[ψi−1T (L(i−1)) | Gi−1ti

].

Therefore EPi−1
[α
i|i−1
T (L(i))−1 | Gi−1ti

] = 1 and hence Pi is a well defined probability measure.

By Proposition 3.4, Pi and Pi−1 coincide on Gi−1. In particular, Pi and P are the same on FT ,
which implies the first assertion. By the induction hypothesis, L(i−1) and FT are conditionally
independent given Fti−1 under the probablity measure Pi−1, which implies, since Fti−1 ⊆ Fti , that

L(i−1) and FT are conditionnally independent given Fti under Pi−1, and also under Pi by 1). It
then suffices to verify that Li and FT are conditionally independent given Fti under Pi to prove
the second assertion. Note that Proposition 3.4 also shows that Li and Gi−1T are conditionally
independent given Gi−1ti

under the probability Pi. Let f be a non-negative Borel function on E
and X is a non-negative FT -mesurable random variable. By the conditional independence of Li

and FT given Gi−1ti
under Pi, one obtains

EPi [f(Li)X | Fti ] = EPi
[
EPi [f(Li) | Gi−1ti

] · EPi [X | Gi−1ti
]
∣∣∣Fti].

Moreover, sinceX and L(i−1) are conditionally independent given Fti under Pi, one has EPi [X | Gi−1ti
] =

EPi [X | Fti ] (cf. Dellacherie-Meyer [8, theorem 45]). Therefore one obtains

EPi [f(Li)X | Fti ] = EPi [f(Li) | Fti ] · EPi [X | Fti ].

Finally, the last assertion of the proposition follows from 1) and Corollary 3.5. The proposition is
thus proved. 2

Remark 3.8 This construction of successive changes of probability measures is natural and only
use the knowledge of L(i) to construct Pi. However, under the probability measure Pi, the law
of Lk, k ∈ {i + 1, · · · , n} is not identical to the law of Lk under Pi−1. We will show in the next
subsection that Pn preserves the P-conditional probability law of Lk given Gk−1tk

.

Proposition 3.9 Let t, u ∈ [ti, T ], t ≤ u and Xu(L(i)) be a non-negative Giu-measurable random
variable. One has

EP[Xu(L(i)) | Git ] =
EP[Xu(x(i))ψiu(x(i))−1 | Ft]

ψit(x
(i))−1

∣∣∣
x(i)=L(i)

.

Proof: We use the change of the probability measure to Pi and obtain

EP[Xu(L(i)) | Git ] =
EPi [Xu(L(i))ψiu(L(i))−1 | Git ]

ψit(L
(i))−1

.
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By Proposition 3.7, L(i) and FT are conditionally independent given Ft under the probability Pi.
Therefore

EP[Xu(L(i)) | Git ] =
EPi [Xu(x(i))ψiu(x(i))−1 | Ft]

ψit(x
(i))−1

∣∣∣
x(i)=L(i)

.

Since Pi and P coincide on FT , we obtain the desired result. 2

3.3 Backward construction of probability measures

In order to have a family of probability measures under which the conditional law of each Li

remains unchanged, we propose the following construction, using a backward change of probability
measures. This method is also crucial in the evaluation of financial claims which we will discuss
later on.

Definition 3.10 Let Qn+1 = P, and for i ∈ {1, . . . , n}, let Qi be a probability measure on (Ω,A)
such that

(3.12)
dQi

dQi+1
:=

1

α
i|i−1
T (L(i))

.

Let

ϕiT (x) =
n∏
k=i

1

α
k|k−1
T (x(k))

.

Then the Radon-Nikodym derivative of Qi with respect to P is given by

(3.13)
dQi

dP
= ϕiT (L).

Note that ϕiT (L) is a GnT -measurable random variable.

Proposition 3.11 The equivalent probability measures (Qi)ni=1 are well defined and verify the
following properties for any i ∈ {1, · · · , n}

1) Qi coincides with P on Gi−1T ,

2) for any k ∈ {i, · · · , n}, Lk and Gk−1T are conditionally independent given Gk−1tk
under Qi,

3) for any k ∈ {1, · · · , n}, Lk has the same conditional law given Gk−1tk
under all (Qi)ni=1 and P.

Proof: We prove the proposition by a reverse induction on i. The assertion is clearly true when
i = n+1. Assume that the probability measures Qi+1, · · · ,Qn+1 have been constructed and verify
the assertions in the proposition. Since Qi+1 is identical to P on GiT , one has

(3.14) Qi+1(Li ∈ dx| Gi−1T ) = α
i|i−1
T (L(i−1), x)Qi+1(Li ∈ dx | Gi−1ti

).

11



In particular, one has

EQi+1
[α
i|i−1
T (L(i)) | Gi−1T ] = 1.

Therefore, the probability measure Qi equivalent to Qi+1 given by (3.12) is well defined.

By (3.14) and Proposition 3.4, the probability measure Qi coincides with Qi+1, and therefore
with P, on Gi−1T . So the assertion (1) is proved, and hence for any k ∈ {1, · · · , i − 1}, Lk has the

same conditional law given Gk−1tk
under Qi and P. Moreover, Li is conditionally independent of

Gi−1T given Gi−1ti
under Qi, and Li has the same conditional probability law given Gi−1ti

under Qi

and Qi+1 (and hence under P also). Finally, for k ∈ {i+ 1, · · · , n}, let h be a non-negative Borel
function on E and Y be a non-negative Gk−1T -measurable random variable, then

EQi [h(Lk)Y | Gk−1tk
] =

EQi+1
[h(Lk)Y α

i|i−1
T (L(i))−1 | Gk−1tk

]

EQi+1 [α
i|i−1
T (L(i))−1 | Gk−1tk

]

=
EQi+1

[h(Lk) | Gk−1tk
]EQi+1

[Y α
i|i−1
T (L(i))−1 | Gk−1tk

]

EQi+1 [α
i|i−1
T (L(i))−1 | Gk−1tk

]

since by the induction hypothesis, Lk and Gk−1T are conditionally independent given Gk−1tk
under

Qi+1. Therefore
EQi [h(Lk)Y | Gk−1tk

] = EQi+1
[h(Lk) | Gk−1tk

]EQi [Y | Gk−1tk
].

If we take Y = 1, then Gk−1tk
-conditional law of Lk under Qi coincides with that under Qi+1, which

proves the assertion (3). Moreover, this also shows

EQi [h(Lk)Y | Gk−1tk
] = EQi [h(Lk) | Gk−1tk

]EQi [Y | Gk−1tk
],

which gives the assertion (2) and completes the proof. 2

3.4 Conditional expectation with successive information

In this subsection, we are interested in the computation of conditional expectations with the
insider’s successive information. The GI -conditional expectations may represent the dynamic
values of a financial claim viewed by the insider. The idea is to make connections with the F-
conditional expectations which is easier to deal with in an explicit manner and the result is given
in a decomposed form with a regime change at each time ti when a new information is available.
We still suppose Assumption 1 for the information flow. In particular, we assume that the insider
has the knowledge on the marginal conditional laws P(Li ∈ dx | Gi−1ti

), i ∈ {1, . . . , n}. We shall
present the evaluation formula in terms of F-conditional expectations.

Let YT (L) be a non-negative GIT -measurable random variable. Our purpose is to determine
the conditional expectation of YT (L) given the insider’s information GIt at t ∈ [0, T ]. Here we
work under the initial probability measure P. Note that the method is valid under an equivalent
probability measure since Assumption 1 is invariant under equivalent probability change. By

12



definition (2.1) and (2.3), we have

EP[YT (L) | GIt ] =
n∑
i=1

1[ti,ti+1)(t)E
P[YT (L) | Git ] =

n∑
i=1

1[ti,ti+1)(t)E
P[Yti+1(L(i)) | Git ](3.15)

where

(3.16) Yti+1(L(i)) := EP[YT (L) | Giti+1
].

It then suffices to determine Yti+1(L(i)) under Assumption 1. The result is obtained by using a
recursive pricing kernel and we use probability measures constructed in the two previous subsec-
tions.

For any i ∈ {1, · · · , n}, let Ji be the operator which sends a non-negative or bounded GiT -
measurable random variable XT (L(i)) to the following integral

(3.17)

∫
E
EP[XT (L(i−1), xi) | Gi−1ti

]P(Li ∈ dxi | Gi−1ti
)

which is a Gi−1ti
-measurable random variable. Note that by Proposition 3.9, we have

(3.18) EP[XT (L(i−1), xi) | Gi−1ti
] =

EP[XT (x(i))ψi−1T (x(i−1))−1 | Fti ]
ψi−1ti

(x(i−1))−1

∣∣∣
x(i−1)=L(i−1)

.

In other terms, the operator Ji can be expressed in terms of F-conditional expectation and integral
w.r.t. the Gi−1ti

-conditional law of Li.

This operator can be better understood by using the probability measure Qi constructed in
§3.3. In fact, by Proposition 3.11, one has

P(Li ∈ dxi | Gi−1ti
) = Qi(Li ∈ dxi | Gi−1ti

),

and
EP[XT (L(i−1), xi) | Gi−1ti

] = EQi [XT (L(i−1), xi) | Gi−1ti
]

since Qi and P coincide on Gi−1T . Therefore we can rewrite (3.17) as∫
E
EQi [XT (L(i−1), xi) | Gi−1ti

]Qi(Li ∈ dxi | Gi−1ti
),

which implies, since Li and G(i−1)T are conditionally independent given Gi−1ti
under Qi, that

(3.19) Ji(XT (L(i))) = EQi [XT (L(i)) | Gi−1ti
].

Therefore, Ji is actually a conditional expectation operator. In particular, it is an linear operator
which verifies the following equality

(3.20) Ji
(
XT (L(i))Zti(L

(i−1))
)

= Zti(L
(i−1))Ji(XT (L(i)))

for any Gi−1ti
-measurable random variable Zti(L

(i−1)) such that the left-hand side of the above
formula is well defined.
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Lemma 3.12 Let XT (L) be a bounded or non-negative GnT -measurable random variable. One has

(3.21) EQi+1
[XT (L) | Giti+1

] = Ji+1 ◦ · · · ◦ Jn
(
XT (L)U i+1

T (L)
)
, i ∈ {0, . . . , n}

where the operator Ji+1 ◦ · · · ◦ Jn is considered as the identity operator when i = n and

(3.22) U i+1
T (L) :=

n∏
k=i+1

α
k|k−1
tk+1

(L(k))

α
k|k−1
T (L(k))

.

Proof: We prove the assertion by reverse induction on i. The case when i = n follows from
(3.19) since UnT (L) = 1. In the following, we assume that the equality (3.21) is verified for i + 1
and we now prove it is the case for i.

By the induction hypothesis and the fact that U i+1
T (L) =

α
i+1|i
ti+2

(L(i+1))

α
i+1|i
T (L(i+1))

U i+2
T (L), one has

Ji+1 ◦ · · · ◦ Jn(XT (L)U i+1
T (L)) = Ji+1

(
EQi+2

[
XT (L)

α
i+1|i
ti+2

(L(i+1))

α
i+1|i
T (L(i+1))

∣∣∣Gi+1
ti+2

])
= Ji+1(EQi+1

[XT (L) | Gi+1
ti+2

]) = EQi+1
[XT (L) | Giti+1

]

where the second equality comes from the probability change from Qi+2 to Qi+1, and the last
equality follows from (3.19). 2

Theorem 3.13 Let YT (L) be a bounded or non-negative GIT -measurable random variable. For any
t ∈ [0, T ], we have

(3.23) EP[YT (L) | GIt ] =
n∑
i=1

1[ti,ti+1)(t)
EP[Yti+1(x(i))ψiti+1

(x(i))−1 | Ft]
ψiti(x

(i))−1

∣∣∣
x(i)=L(i)

where Yti+1(·) is Fti+1 ⊗ E⊗i-measurable such that Yti+1(L(i)) = EP[YT (L) | Giti+1
]. Moreover, the

sequence of random variables (Yti+1(L(i)))ni=0 satisfies the following backward recursive relation

(3.24) Yti+1(L(i)) =
Ji+1

(
Yti+2(L(i+1))Φti+2(L(i+1))

)
Ji+1(Φti+2(L(i+1)))

, i ∈ {0, · · · , n− 1},

with the terminal term Ytn+1(L(n)) = YT (L) and the pricing kernel given by

(3.25) Φti+2(L(i+1)) := Ji+2 ◦ · · · ◦ Jn
(
α
i+1|i
ti+2

(L(i)) · · ·αn|n−1T (L(n))
)

with convention Φt1 = 1.

Proof: By (3.15) and Proposition 3.9, we obtain the equality (3.23). We now prove the relation
(3.24) by computing the conditional expectation (3.16) under the change of probability measure
to Qi+1 as

Yti+1(L(i)) = EP[Yti+2(L(i+1)) | Giti+1
] =

EQi+1
[Yti+2(L(i+1))ϕi+1

T (L)−1 | Giti+1
]

EQi+1 [ϕi+1
T (L)−1 | Giti+1

]
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where ϕi+1
T (L) is the Radon-Nikodym derivative of Qi+1 with respect to P defined in (3.13). By

Lemma 3.12, one has

EQi+1
[Yti+2(L(i+1))ϕi+1

T (L)−1 | Giti+1
] = Ji+1 ◦ · · · ◦ Jn

(
Yti+2(L(i+1))ϕi+1

T (L)−1U i+1
T (L)

)
= Ji+1

(
Yti+2(L(i+1)) · Ji+2 ◦ · · · ◦ Jn(ϕi+1

T (L)−1U i+1
T (L)

)
where the second equality comes from (3.20). Note that by (3.22) one has

U i+1
T (L)

ϕi+1
T (L)

= α
i+1|i
ti+2

(L(i)) · · ·αn|n−1T (L(n))

which implies

EQi+1
[Yti+2(L(i+1))ϕi+1

T (L)−1 | Giti+1
] = Ji+1(Yti+2(L(i+1))Φti+2(L(i+1))).

In addition, Lemma 3.12 shows that

(3.26) EQi+1
[ϕi+1
T (L)−1 | Giti+1

] = Ji+1(Φti+2(L(i+1)))

which implies (3.24) and completes the proof. 2

4 Several stronger density hypotheses

In this section, we consider particular cases of our successive density framework by introducing
several density hypotheses stronger than Assumption 1. We compare these hypotheses and deduce
concrete evaluation formulas in each case. For simplicity, we suppose that F0 is trivial.

4.1 Density hypothesis with different initial σ-algebras

In a first step we consider the conditional law of Li given the initial σ-algebra of the previous
information filtration Gi−10 = σ(L(i−1)).

Assumption 2 For any i ∈ {1, · · · , n}, the Gi−1T -conditional law of Li is equivalent to its Gi−10 -
conditional law under the probability P, namely there exists a positive Gi−1T ⊗E-measurable function

β
i|i−1
T (L(i−1), ·) such that

(4.1) P(Li ∈ dx | Gi−1T ) = β
i|i−1
T (L(i−1), x )P(Li ∈ dx | Gi−10 ) a.s..

Similarly to what we have explained in Remark 3.1, we can consider the conditional density

β
i|i−1
T (L(i−1), ·) as a positive (FT ⊗E⊗(i−1))⊗E-mesurable function β

i|i−1
T (·, ·) evaluated at L(i−1).

For any t ∈ [0, T ], let β
i|i−1
t (·, ·) be an (Ft ⊗ E⊗(i−1))⊗ E-measurable function such that

β
i|i−1
t (L(i−1), x) = EP[β

i|i−1
T (L(i−1), x) | Gi−1t ].
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By Corollary 3.5,

(4.2) P(Li ∈ dx | Gi−1t ) = β
i|i−1
t (L(i−1), x)P(Li ∈ dx | Gi−10 ).

Note that β
i|i−1
0 (L(i−1), x) = 1 a.s. for all x ∈ E and

(4.3)

∫
E
β
i|i−1
t (L(i−1), x)P(Li ∈ dx | Gi−10 ) = 1.

In particular, if we define for all ti ≤ t ≤ T a function α
i|i−1
t (x) on Ω × Ei which is FT ⊗ E i-

measurable such that

(4.4) α
i|i−1
t (x(i)) =

β
i|i−1
t (x(i))

β
i|i−1
ti

(x(i))
,

then the random vector L verifies Assumption 1 with the conditionnal density α
i|i−1
T (L(i−1), x)

and α
i|i−1
t (L(i−1), x) = EP[α

i|i−1
T (L(i−1), x) | Gi−1t ], x ∈ E.

Let us notice that under Assumption 2 the filtration Gi is right-continuous on [0, T ], whereas
it is a priori right-continuous only on [ti, T ] under the weaker Assumption 1.

We now apply Theorem 3.13 to compute the conditional expectation under Assumption 2 where
the recursive operators can be simplified in an explicit manner. As the result can also be obtained
in a more straightforward manner using a global approach (see Subsection 4.2), we will give the
proof by using the recursive approach in the Appendix 6.1.

Proposition 4.1 We assume Assumption 2. Let YT (L) be a non-negative GnT -measurable random
variable. Then for t ∈ [0, T ] one has

EP[YT (L) | GIt ] =
n∑
i=1

11[ti,ti+1)(t)

∫
En−i

EP[YT (x)ZnT (x) | Ft]
Zit(x

(i))

∣∣∣∣
x(i)=L(i)

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0)

where the pricing kernel is defined as

(4.5) Zit(x
(i)) :=

i∏
k=1

β
k|k−1
t (x(k)).

We give the following key property of the pricing kernel.

Lemma 4.2 For i ∈ {0, . . . , n− 1} and t ∈ [0, T ],
(4.6)

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Git) =
Znt (L(i), xi+1, · · · , xn)

Zit(L
(i))

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0)

with convention Z0
t = 1. Moreover, one has

(4.7) Zit(L
(i)) =

∫
En−i

Znt (L(i), xi+1, · · · , xn)P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0).
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Proof: Let Iit be the operator sending a non-negative Git-measurable random variable Yt(L
(i)) to

E[Yt(L
(i)) | Gi−1t ] =

∫
E
Yt(L

(i−1), xi)β
i|i−1
t (L(i−1), xi)P(Li ∈ dxi | Gi−10 ).

On the one hand, by the property of conditional expectation, one has,

(Ii+1
t ◦ · · · ◦ Int )(Yt(L)) = EP[Yt(L) | Git ]

=

∫
En−i

Yt(L
(i), xi+1, · · · , xn)P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Git).

(4.8)

On the other hand, by the definition of the operators Ii+1
t , · · · , Int and the fact

βi+1|i(L(i), xi+1) · · ·βn|n−1(L(i), xi+1, · · · , xn) =
Znt (L(i), xi+1, · · · , xn)

Zit(L
(i))

,

it follows

(Ii+1
t ◦ · · · ◦ Int )(Yt(L))

=

∫
En−i

Yt(L
(i), xi+1, · · · , xn)

Znt (L(i), xi+1, · · · , xn)

Zit(L
(i))

P(Ln ∈ dxn|Gn−10 ) · · ·P(Li+1 ∈ dxi+1 | Gi0)

=

∫
En−i

Yt(L
(i), xi+1, · · · , xn)

Znt (L(i), xi+1, · · · , xn)

Zit(L
(i))

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0).

Combining with the equality (4.8), we deduce the first assertion (4.6) of the lemma, which leads
to (4.7) directly. 2

Another hypothesis is the Jacod hypothesis in the successive initial enlargement of filtration
setting where the terminal conditional law of each Li given the previous information filtration
G(i−1) is equivalent to its probability law.

Assumption 3 For any i ∈ {1, · · · , n}, the Gi−1T -conditional law of Li is equivalent to its con-
ditional law under the probability P, namely there exists a positive Gi−1T ⊗ E-measurable function

p
i|i−1
T (L(i−1), ·) such that

(4.9) P(Li ∈ dx| Gi−1T ) = p
i|i−1
T (L(i−1), x)P(Li ∈ dx) a.s.

Note that, under the above assumption, for any t ∈ [0, T ], the Gi−1t -conditional law of Li has

the density p
i|i−1
t (L(i−1), x) := EP[p

i|i−1
T (L(i−1), x) | Gi−1t ] with respect to P(Li ∈ dx). In particular,

the family of (P,Gi−1)-martingales pi|i−1(L(i−1), ·) has the initial value

(4.10) p
i|i−1
0 (L(i−1), x) =

P(Li ∈ dx| Gi−10 )

P(Li ∈ dx)
, x ∈ E.
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Moreover, if L satisfies Assumption 3, it also satisfies Assumption 2 with β
i|i−1
T (L(i−1), x) where

for all t,

(4.11) β
i|i−1
t (x(i)) =

p
i|i−1
t (x(i))

p
i|i−1
0 (x(i))

.

We give hereafter an example where Assumption 3 is satisfied and the density processes pi|i−1

are given explicitly.

Example 4.3 Let (W,W ′) a two-dimensional Brownian motion and Ft = σ(Ws, s ≤ t ≤ T ).
Define the Brownian motion B = ρW + (1 − ρ)W ′ with ρ ∈ [0, 1[ and let Li = Bti+1 be the
endpoint of B at each interval [ti, ti+1[. Then Assumption 3 is satisfied and

p
i|i−1
t (L(i−1), x) =



φ(Li−1, ti+1−ti, x)
φ(0,ti+1,x)

, t ≤ ti

φ(Li−1+ρ(Wt−Wti ), ρ
2(ti+1−t)+(1−ρ)2(ti+1−ti), x)
φ(0,ti+1,x)

, ti < t ≤ ti+1

φ(Li−1+ρ(Wti+1−Wti ), (1−ρ)
2(ti+1−ti), x)

φ(0,ti+1,x)
, ti+1 < t ≤ T

where φ(µ, σ2, x) is the probability density function of the normal distribution N(µ, σ2). We note
that pi|i−1(L(i−1), x) is a (P,Gi−1)-martingale on [0,T].

We deduce from Proposition 4.1 the following result.

Proposition 4.4 We assume Assumption 3. Let YT (L) be a non-negative GnT -measurable random
variable. Then for t ∈ [0, T ] one has

EP[YT (L) | GIt ] =
n∑
i=1

11[ti,ti+1)(t)

∫
En−i

EP[YT (x)Z̃nT (x) | Ft]
Z̃it(x

(i))

∣∣∣∣
x(i)=L(i)

P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn)

where

Z̃it(x
(i)) =

i∏
k=1

p
k|k−1
t (x(k)).

Proof: We apply Proposition 4.1 under Assumption 3. By the equality (4.11) we obtain

Zit(x
(i)) =

i∏
k=1

β
k|k−1
t (x(k)) = Z̃it(x

(i))

i∏
k=1

1

p
k|k−1
0 (x(k))

.

Therefore Proposition 4.1 leads to

EP[YT (L) | GIt ] =

n∑
i=1

11[ti,ti+1)(t)

∫
En−i

EP[YT (x)Z̃nT (x) | Ft]
Z̃it(x

(i))

∣∣∣∣
x(i)=L(i)

n∏
k=i+1

1

p
k|k−1
0 (x(k))

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0).
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Finally, by (4.10) which implies the following relation
(4.12)

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0) =
( n∏
k=i+1

p
k|k−1
0 (x(k))

)
P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn),

we obtain the result of the proposition. 2

Remark 4.5 Similarly to Lemma 4.2, for i ∈ {0, · · · , n− 1} and t ∈ [0, T ], one has
(4.13)

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|Git) =
Z̃nt (L(i), xi+1, · · · , xn)

Z̃it(L
(i))

P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn),

where Z̃0
t = 1 and

Z̃it(L
(i)) =

∫
En−i

Z̃nt (L(i), xi+1, · · · , xn)P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn).

Due to the transitivity of the equivalence relation between probability measures,

Assumption 3 ⇒ Assumption 2 ⇒ Assumption 1.

We now provide several examples to compare these hypotheses.

Example 4.6 (1) Trivial examples (that lead to no enlargement of filtrations) show that the
reciprocal statements are false: for example, Li which is a deterministic function of L(i−1) satisfies
Assumption 2 but not Assumption 3; Li, which is a Gi−1ti

-measurable random variable but not

Gi−10 -measurable satisfies Assumption 1 and not Assumption 2.

(2) More generally, Assumption 2 is satisfied but not Assumption 3 at step ti if and only if the
distribution of Li is not equivalent to the conditional distribution of Li given L(i−1).

(3) Here is another example, in the context of credit risk and default threshold, in which
Assumption 2 is satisfied and not Assumption 3. Let Li take two values a or b, a < b. At time
ti, the manager has an anticipation of the firm value XT ′+ti with T ′ > T and knows if this value
will be above or below the constant target c, X being an F-adapted process. If XT ′+ti+1

is above
the target and the former threshold Li was low, then the manager keep fixing a low level for the
threshold Li+1, otherwise she will fix a high level for Li+1, i.e.

Li+1 = a1{XT ′+ti+1
>c}1{Li=a} + b

(
1{XT ′+ti+1

≤c} + 1{XT ′+ti+1
>c}1{Li=b}

)
In this example, the distribution of Li+1 has two atoms a and b with positive probability, while
the distribution of Li+1 given the event {Li = b} is a Dirac measure.

(4) In the same line , here is an example in which Assumption 1 is satisfied but not Assumption
2. If XT ′+ti+1

and the current value Xti+1 is above the target c then the manager keeps fixing a
low level for the threshold Li+1, otherwise she fixes a high level for Li+1:

Li+1 = a1{XT ′+ti+1
>c}1{Xti+1>c} + b

(
1{XT ′+ti+1

≤c} + 1{XT ′+ti+1
>c}1{Xti+1≤c}

)
19



In this example, the distribution of Li+1 (given L(i)) has two atoms a and b with positive proba-
bility, while the distribution of Li+1 given the event {Xti+1 ≤ c} is a Dirac measure.

As previously in Proposition 3.11, we can introduce a family of probability measures which
satisfy the following properties.

Proposition 4.7 Under Assumption 2 (resp. Assumption 3), there exists a family of equivalent

probability measures {Qi
, i = 1, · · · , n} such that

1) Qi
is identical to P on Gi−1T ,

2) any Lk, k ∈ {1, · · · , n}, has the same conditional law given Gk−10 (resp. the same probability

law) under Qi
and P,

3) under Qi
, the vector (Li, · · · , Ln) and Gi−1T are conditionally independent given Gk−10 (resp.

independent).

Moreover, the Radon-Nikodym derivative is given by

(4.14)
dQk

dP

∣∣∣
GnT

=
n∏
i=k

1

β
i|i−1
T (L(i))

=
Zk−1T (L(k−1))

ZnT (L)

(
resp.

n∏
i=k

1

p
i|i−1
T (L(i))

=
Z̃k−1T (L(k−1))

Z̃nT (L)

)
.

4.2 Global enlargement of filtration

In this subsection, instead of assuming the density hypothesis in a successive way for the family
of enlarged filtrations, we consider the random variables L1, · · · , Ln as a vector and suppose the
Jacod’s hypothesis in the following way.

Assumption 4 The F-conditional law of L = (L1, · · · , Ln) is equivalent to its probability law,
i.e., there exists an FT ⊗ En-measurable function pT (·) such that

(4.15) P(L ∈ dx| Ft) = pT (x)P(L ∈ dx) a.s.

where dx = (dx1, · · · , dxn).

We denote by (pt(x), t ∈ [0, T ]) the density process of L given F, which is a (P,F)-martingale
for any x ∈ En. Define the filtration GL = (GLt )t∈[0,T ], where GLt := Ft ∨ σ(L) coincides with Gnt .

Then, L and F are independent under the equivalent probability measure PL defined by

dPL

dP

∣∣∣
GLt

:=
1

pt(L)
.

Remark that L1, · · · , Ln are not mutually independent under PL. In particular, if L is independent
of FT , then pt(L) = 1.

We make precise the relationship between the global approach and the successive one. In
particular, we compare Assumption 4 with previous assumptions.
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Proposition 4.8 1) Assumption 4 is equivalent to Assumption 2. The conditional densities are
given by the following relations: on one hand,

(4.16) pT (x) =
n∏
i=1

β
i|i−1
T (x(i))

and on the other hand,

(4.17) β
i|i−1
T (L(i−1), xi) =

∫
En−i pT (L(i−1), xi, · · · , xn)P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|Gi0)∫
En−i+1 pT (L(i−1), xi, · · · , xn)P(Li ∈ dxi, · · · , Ln ∈ dxn|Gi−10 )

.

2) The probability measure PL coincides with the probability measure Q1
constructed in Proposition

4.7 under Assumption 2.

Proof: If Assumption 2 holds, let i = 0 in Lemma 4.2, we obtain

P(L ∈ dx|Ft) = Znt (x)P(L ∈ dx),

which implies Assumption 4 with

(4.18) pt(x) = Znt (x).

Moreover, by Proposition 4.7, PL = Q1
, which is the second assertion of the proposition.

Conversely, supposing Assumption 4, F and L are independent under PL, thus for i = 1, · · · , n,

PL(Li ∈ dxi| FT ∨ σ(L(i−1))) = PL(Li ∈ dxi|L(i−1)), P− a.s.

and we conclude, using the stability of Assumption 2 under an equivalent change of probability
measure (PL is equivalent to P ), that

P(Li ∈ dxi| Gi−1T )(ω) ∼ P(Li ∈ dxi| Gi−10 ).

Moreover, the Radon-Nikodym density dP/dPL on GiT is given by

QiT (L(i)) := EPL [pT (L)|GiT ] =

∫
En−i

pT (L(i), xi+1, · · · , xn)P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|Gi0)

since L and F are independent under PL and PL coincides with P on σ(L). Therefore, by Remark
3.3, we obtain that

P(Li ∈ dxi| Gi−1T ) =
QiT (L(i−1), xi)∫

E Q
i
T (L(i−1), xi)P(Li ∈ dxi|Gi−10 )

P(Li ∈ dxi| Gi−10 ),

which leads to (4.17).

2
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Proposition 4.9 1) Assumption 4 together with the condition P(L ∈ dx) ∼
∏n
i=0 P(Li ∈ dxi) is

equivalent to Assumption 3. The conditional densities are given by the following relations: on
one hand,

(4.19) pT (x) =
Z̃nT (x)

Z̃n0 (x)
=

n∏
i=1

p
i|i−1
T (x(i))

p
i|i−1
0 (x(i))

and on the other hand,

(4.20) p
i|i−1
T (L(i−1), xi) =

∫
En−i

pT
ζ (L(i−1), xi, · · · , xn)P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn)∫

En−i+1
pT
ζ (L(i−1), xi, · · · , xn)P(Li ∈ dxi) · · ·P(Ln ∈ dxn)

,

where ζ(·) is the Radon-Nikodym density of
∏n
i=1 P(Li ∈ dxi) with respect to P(L ∈ dx).

2) Under Assumption 4 and assuming P(L ∈ dx) = ζ(x)−1
∏n
i=1 P(Li ∈ dxi) with ζ(·) being a

positive function on En, the equivalent probability measure QL defined by

(4.21)
dQL

dP
∣∣
GnT

=
ζ(L)

pT (L)

satisfies

(a) F and the random variables L1, · · · , Ln are mutually independent under QL

(b) the marginal law of each L1, · · · , Ln under QL coincide with the one under P.

3) The probability measure QL coincides with the probability Q1
defined in Proposition 4.7 under

Assumption 3.

Proof: 1) and 2) Under Assumption 3, by Remark 4.5 and taking i = 0 in (4.13), we have

P(L ∈ x|FT ) = Z̃nT (x)P(L1 ∈ dx1) · · ·P(Ln ∈ dxn)

and in particular

(4.22) P(L ∈ x) = Z̃n0 (x)P(L1 ∈ dx1) · · ·P(Ln ∈ dxn).

Therefore, Assumption 4 is true with pT (x) = Z̃nT (x)/Z̃n0 (x).

Conversely, we assume Assumption 4 and the condition P(L ∈ x) ∼
∏n
i=1 P(Li ∈ dxi), with

P(L ∈ x) = ζ(x)−1
n∏
i=1

P(Li ∈ dxi)

Note that the Assumption 4 implies the existence of a probability measure PL equivalent to P such
that L is independent of FT under PL and that PL coincides with P on FT and on σ(L). Therefore

PL(L ∈ dx) = P(L ∈ dx) = ζ(x)−1
n∏
i=1

P(Li ∈ dxi) = ζ(x)−1
n∏
i=1

PL(Li ∈ dxi),
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which implies that

EPL [ζ(L)] =

∫
En

ζ(x)

ζ(x)

n∏
i=1

PL(Li ∈ dxi) = 1.

We introduce a new probability measure QL on GLT such that dQL/dPL = ζ(L), which is also given
by (4.21). We then check (a) and (b) in the second assertion.
•We first prove that L and FT are independent under QL. Let f be a bounded Borel function on
En and X be a bounded FT -measurable random variable. One has

EQL [f(L) ·X] = EPL [ζ(L)f(L)X] = EPL [ζ(L)f(L)] · EPL [X] = EQL [f(L)]EPL [X],

where the second equality comes from the fact that L and FT are independent under PL. Taking
f = 1 in the last expression leads to

EPL [X] = EQL [X],

therefore EQL [f(L)X] = EQL [f(L)] · EQL [X].
• Moreover, the random variables L1, · · · , Ln are independent under QL. Indeed, if f1, · · · , fn are
bounded Borel functions on E, one has

EQL [f1(L
1) · · · fn(Ln)] = EPL [ζ(L)f1(L

1) · · · fn(Ln)]

=

∫
En
ζ(x)f1(x

1) · · · fn(xn)PL(L ∈ dx)

=

∫
En
f1(x

1) · · · fn(xn)

n∏
i=1

PL(Li ∈ dxi) =

n∏
i=1

EPL [fi(L
i)].

Besides, taking fj = 1 for all j 6= i gives

(4.23) EQL [fi(L
i)] = EPL [fi(L

i)] = EP[fi(L
i)].

Therefore

EQL [f1(L
1) · · · fn(Ln)] =

n∏
i=1

EQL [fi(L
i)].

• The two previous points gives

QL(Li ∈ dxi|Gi−1T ) = QL(Li ∈ dxi).

Moreover, the Radon-Nikodym density dP/dQL on GiT is given by

EQL
[pT (L)

ζ(L)

∣∣∣GiT ] =

∫
En−i

pT
ζ

(L(i), xi+1, · · · , xn)P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn).

By Remark 3.3, this implies Assumption 3 with

p
i|i−1
t (L(i−1), x) =

∫
En−i

pT
ζ (L(i−1), xi, · · · , xn)P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn)∫

En−i+1
pT
ζ (L(i−1), xi, · · · , xn)P(Li ∈ dxi) · · ·P(Ln ∈ dxn)

.
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Therefore the assertions 1) and 2) are proved.

3) Finally, to prove the third assertion, it suffices to verify that
(∏n

i=1 p
i|i−1
T (L(i))

)−1
is equal

to ζ(L)/pT (L). This is a consequence of (4.19) since (4.22) leads to

ζ(x) =
1

Z̃n0 (x)
=

n∏
i=1

1

p
i|i−1
0 (x(i))

.

The proposition is thus proved.

2

Remark 4.10 In the particular case where the law of L admits a density with respect to the
Lebesgue measure on En, Assumptions 3 and 4 are equivalent.

Remark 4.11 The function ζ can be expressed in terms of copulas: let c(u1, · · · , un) denotes the
density of the copula such that

C(u1, · · · , un) = F
(
F−11 (u1), · · · , F−1n (un)

)
=

∫ u1

−∞
· · ·
∫ un

−∞
c(u1, · · · , un)du1 · · · dun

where F1, · · · , Fn are marginal distribution functions and F is the joint distribution function, then

(4.24) ζ(x1, · · · , xn) =
1

c(F1(x1), · · · , Fn(xn))

4.3 Conditional expectation using the global approach

We now apply the global approach to calculate the conditional expectations with respect to the
insider’s filtration GI , under the equivalent Assumptions 2 and 4. The idea is to use the global
change of probability measure PL, which will make easier the computation.

Proposition 4.12 We assume Assumption 4. Let YT (L) be a non-negative GnT -measurable ran-
dom variable. Then, for t ∈ [0, T ],

EP[YT (L)|GIt ] =

n∑
i=1

1[ti,ti+1)(t)

∫
En−i E

P[YT (x)pT (x)|Ft]P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|L(i))∫
En−i pt(x)P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|L(i))

∣∣∣
x(i)=L(i)

Proof: We use the change of probability measure to PL constructed in the global approach
Subsection 4.2. By Bayes formula, one has

1[ti,ti+1)E
P[YT (L)|GIt ] = 1[ti,ti+1)E

P[YT (L)|Git ] = 1[ti,ti+1)
EPL [(YT pT )(L)|Git ]
EPL [pT (L)|Git ]

.
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Since L and F are independent under PL, and PL coincides with P on F, and σ(L) respectively,
one has

EPL [pT (L1, · · · , Ln)|Git ]

=
(∫

En−i
EP[pT (x(i), xi+1, · · · , xn)|Ft]P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|L(i)))

)∣∣∣
x(i)=L(i)

=
(∫

En−i
pt(x

(i), xi+1, · · · , xn)P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|L(i)))
)∣∣∣

x(i)=L(i)
.

where the second equality results from the martingale property of (pt(x))t∈[0,T ]. Moreover,

EPL [(YT pT )(L1, · · · , Ln)|Git ]

=
(∫

En−i
EP[(YT pT )(x(i), xi+1, · · · , xn)|Ft]P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|L(i)))

)∣∣∣
x(i)=L(i)

(4.25)

which completes the proof. 2

Remark 4.13 By the equality pT (x) = ZnT (x) (c.f. (4.18)) and the relation (4.7), we see that
Proposition 4.12 gives the same result as in Proposition 4.1 under Assumption 2.

Remark 4.14 If Assumption 3 is satisfied, then

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn|L(i)) =
1

ζ(L(i), xi+1, · · · , xn)
P(Li+1 ∈ dxi+1) · · ·P(Ln ∈ dxn).

Then as a direct consequence of Proposition 4.12, we have
(4.26)

EP[YT (L)|GIt ] =
n∑
i=1

1[ti,ti+1)(t)

∫
En−i

EP[(YT
pT
ζ )(x(i), xi+1, · · · , xn)|Ft]

pt
ζ (x(i), xi+1, · · · , xn)

|x(i)=L(i)

n∏
k=i+1

P(Lk ∈ dxk).

5 Application and numerical illustration

In this section, we apply our framework to a default model with insider’s information. We are
particularly interested in the default/survival probability and the pricing of defaultable bonds
under different information levels.

We consider the default time of a firm which is supposed to be the first time that a continuous
F-adapted process (Xt, t ≥ 0) reaches a random threshold, which is determined by the manager of
the firm and can be adjusted dynamically. More precisely, let the default threshold (Lt, t ∈ [0, T ])
be given in the form (2.2). The default time is defined by

(5.1) τ := inf{t : Xt < Lt}

where the random variables L1, · · · , Ln represent the private information of the manager on the
threshold at times t1, · · · , tn which are not available by standard investors. This model extends
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the one considered in [14]. To make comparison with a standard investor, we also introduce the
information filtration given by G = (Gt)t∈[0,T ] where

Gt =
⋂
s≥t
Fs ∨ σ(τ ∧ s)

The filtration G is the progressive enlargement of F by the random time τ and is classically used
to model the available information in a default market for a standard agent, in comparison with
the filtration GI which represents the insider information.

5.1 Conditional survival probability

One of fundamental quantities in the modeling of credit risk is the conditional survival probability
given the available information. The following result give the conditional survival probability
given the insider information. For ease of computations, we suppose that Assumption 3 holds, but
similar computations can be done under the other assumptions studied in this paper.

Proposition 5.1 Let 0 ≤ t ≤ s ≤ T . We denote by i and j the indexes such that ti ≤ t < ti+1

and tj ≤ s < tj+1. Then

P(τ > s|GIt ) = 11{τ>t}
EP
[
χis(x

(i))
∣∣∣Ft]∫

En−i
ps
ζ (x(i), xi+1 · · · , xn)

∏n
k=i+1 P(Lk ∈ dxk)

∣∣∣
x(i)=L(i)

.(5.2)

where, denoting X∗[t,s[ := inf
t≤u<s

Xu and X∗t := X∗[0,t[ = inf
0≤u<t

Xu, if i < j,

χis(x
(i)) =

∫
En−i

ps
ζ

(x)11{X∗
[t,ti+1[

>xi}11{X∗[ti+1,ti+2[
>xi+1} . . . 11{X∗[tj ,s[>xj}

n∏
k=i+1

P(Lk ∈ dxk).

and else if i = j

χis(x
(i)) =

∫
En−i

ps
ζ

(x)11{X∗
[t,s[

>xi}

n∏
k=i+1

P(Lk ∈ dxk).

Proof: By the definitions (5.1) and (2.2), the survival event can be written as

11{τ>s} = 11{X∗
[t1,t2[

>L1} . . . 11{X∗
[ti,t[

>Li}11{X∗
[t,ti+1[

>Li} . . . 11{X∗
[tj ,s[

>Lj}

We apply (4.26) to the random variable

YT (x) = 11{X∗
[t1,t2[

>x1} . . . 11{X∗
[ti,t[

>xi}11{X∗
[t,ti+1[

>xi} . . . 11{X∗
[tj ,s[

>xj}

and obtain the results. 2

We also recall that for the standard information, it is well known (see [5, 10]) that for t ≤ s,

P(τ > s|Gt) = 11{τ>t}
P(τ > s|Ft)
P(τ > t|Ft)

.(5.3)

In the following, we shall compare the survival probability estimated by these two types of investors
in an explicit setting, in order to show the impact of insider information.
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5.2 An explicit default model

We consider now a concrete example with three periods 0 = t1 < t2 < t3 = T where the firm value
X follows a geometric Brownian motion (with drift µ and volatility σ). The default threshold
information are renewed at t1 and t2 respectively as L1 and L2 and we suppose that L1 and L2

are exponential random variables with intensity λ1 and λ2 respectively. In addition, we assume
that L = (L1, L2) are independent of FT . We note that the standard investor has the knowledge
on the (marginal and joint) laws of L while the insider knows the realization of these thresholds
at the renewal times of information. Let the law of L be given by a Gumbel-Barnett copula (see
[13]) with parameter 0 ≤ θ ≤ 1, which is given by

C(u1, u2) = u1 + u2 − 1 + (1− u1)(1− u2)e−θ ln(1−u1) ln(1−u2)

Then the joint cumulative distribution function of (L1, L2) is given by

F (x1, x2) = 1− e−λ1x1 − e−λ2x2 + e−(λ1x1+λ2x2+θλ1λ2x1x2)

Moreover, by (4.24), one has

1

ζ(x1, x2)
= e−(θλ1λ2x1x2)

(
(θλ1x1 + 1)(θλ2x2 + 1)− θ

)
.

Let denote ν = µ − σ2

2 . We recall that for a geometric Brownian motion X with drift µ and
volatility σ starting from X0 = 1, the density of the couple (X∗t , Xt) for t > 0 is given by

(5.4) ft(u, v) = 11{u≤v}11{0≤u≤1}
2vν/σ

2−1 ln(v/u2)

σ3
√

2πt(3/2)u
e−

ν2t
2σ2 e−

ln2(v/u2)

2σ2t

and the density of X∗t is given by

fX∗t (w) = 11{0<w≤1}

(
1√

2πtw

(
e−

(− ln(w)+νt)2

2σ2t + w2ν/σ2
e−

(− ln(w)−νt)2

2σ2t

)
− ν

σ2
w2ν/σ2−1Erfc

(
− ln(w)− νt

σ
√

2t

))
.

where Erfc(x) = 2√
π

∫ +∞
x e−v

2
dv, x ≥ 0.

We now present the explicit formulas for the conditional survival probabilities as below.

5.2.1 Survival probability for t ∈ [t1, t2)

Insider information

(5.5) P(τ > T |GIt ) = 11{τ>t}

∫ +∞

0
EP
[
11{X∗

[t,t2[
>x1}11{X∗

[t2,T [
>y}|Ft

]
x1=L1

1

ζ(L1, y)
λ2e
−λ2ydy
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since
∫ +∞
0

1
ζ(L1,y)

λ2e
−λ2ydy = 1. To compute more explicitly this quantity, we need the joint law

of the running minimum (X∗[t,t2[, X
∗
[t2,s[

). Using the result of [6], one has

EP
[
11{X∗

[t2,T [
>y}|Ft2

]
= 11{y≤Xt2}

(
1− 1

2
Erfc

( ln(Xt2/y) + ν(T − t2)
σ
√

2(s− t2)

))
.

− 1

2

( y

Xt2

)2ν/σ2

Erfc
( ln(Xt2/y)− ν(T − t2)

σ
√

2(T − t2)

)
=: G(Xt2 , y).

Futhermore, using the markov property and the joint law of (X∗t2−t, Xt2−t), it leads to

EP
[
11{X∗

[t,t2[
>x1}11{X∗

[t2,T [
>y}|Ft

]
=

∫ ∫
11{uXt>x1}G(vXt, y)ft2−t(u, v)dudv

Standard information For the progressive information, we use (5.3) where successive condi-
tioning implies that

P(τ > T |Ft) =

∫ 1

0

∫ +∞

0

∫ 1

0
e−λ1 min(X∗t ,uXt)−λ2(vwXt)−θλ1λ2 min(X∗t ,uXt)(vwXt)

fX∗T−t2
(w)ft2−t(u, v)dwdvdu

5.2.2 Survival probability for t ∈ [t2, T )

Straightforward computations imply the following results.

Insider information

P(τ > T |GIt ) = 11{τ>t}

∫ 1

u
fX∗T−t(w)dw|

u=L1

Xt

Standard information

P(τ > T |Gt) = 11{τ>t}

∫ 1
0 F
(
X∗t2 ,min(X∗[t2,t[, wXt)

)
fX∗T−t(w)dw

F
(
X∗t2 , X

∗
[t2,t[

)
5.3 Numerical results

In this subsection, we compare the survival probabilities for insider and standard investor by
numerical examples. We use the default time model described previously. The value of the
parameters are µ = 0.05, σ = 0.8, λ1 = 1.5 and λ2 = 1, t1 = 0, t2 = 1 and t3 = T = 2. In
particular, we analyse the impact of the correlation between L1 and L2 through the parameter
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θ. The case θ = 0 corresponds to the independence case. We present two examples. In the first
one, there is a default event before the maturity and in the second one, there is no default. In
each example, we compare the survival probabilities P (τ > T |GIt ) and P (τ > T |Gt) on a given
trajectory of the firm value.

In the first example, Figure 1 presents the realized trajectory of the firm value. We suppose
that the manager adjust the threshold level at t2 = 1 from L1 = 0.8 to L2 = 1.5, so there is a
high risk of default after time t2, which is larger than the expected value. We observe from the
three graphs in Figure 2 that in all the cases (for different values of θ), the insider will modify
immediately the estimations on the survival probability and there is an instantaneous jump at
t2. While the standard investor, who is not accessible to this information, maintain the survival
probability at a high level and can adjust the estimation only when the default occurs effectively.
Finally comparing the three graphs where the correlation between L1 and L2 varies, we see that
when the time approaches t2, since the firm value is at a relatively high level compared to L1,
when there is a strong correlation (with larger θ) between the two thresholds, the insider will have
a higher estimation for the survival probability than when there is independence. However, such
difference between the estimations which are due to different values of θ will be neutralized once
the insider get the exact information on L2 at time t2.

Figure 1: First Case : Default during [1, 2], L1 = 0.8, L2 = 1.5
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In the second example where the sample path of the firm value is given by Figure 3, there is
no default before the maturity T . In addition, we suppose that the level of the second threshold
L2 = 0.6 is slightly lower than the first one L1 = 0.8 and is close to the expected value. So
there is no important readjustment of the insider’s estimation at t2, as shown by all the three
graphs in Figure 4. However, when the firm value descends gradually after time t2 and approaches
the threshold level L2, the estimations of the survival probability by the insider has dropped
significantly. Only when the firm value begins to go up back and when the time approaches the
maturity, the insider modifies once again the survival probability to be higher. In contrast, the
estimations by the standard investor remain quite stable during all the period in this example.
The comparison between the correlation parameter θ is similar as in the first example. Since the
firm value is at a high level during the first period, if θ = 1, the insider has a higher estimation for
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Figure 2: Survival Probabilities P (τ > T |GIt ) and P (τ > T |Gt) for θ = 0, 0.5 and 1
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the survival probability than in the case if θ = 0. However, such differences are visible only before
the second information renewal time.

Figure 3: Second Case : No Default , L1 = 0.8, L2 = 0.6
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6 Appendix

6.1 Proof of Proposition 4.1

The goal of this subsection is to apply Theorem 3.13 to compute GI -conditional expectations
under Assumption 2. We begin by calculating, in several lemmas below, the recursive operators in
Theorem 3.13 in an explicit manner and then give the proof of Proposition 4.1. Throughout this
Subsection 6.1 Assumption 2 holds.

Lemma 6.1 Let i ∈ {1, . . . , n} and t ∈ [ti, T ]. If Xt(L
(i)) is a non-negative Git-measurable random
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Figure 4: Survival Probabilities P (τ > T |GIt ) and P (τ > T |Gt) for θ = 0, 0.5 and 1
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variable. Then one has

Ji(Xt(L
(i))) =

∫
E

EP[Xt(x
(i))Zi−1t (x(i−1)) | Fti ]
Zi−1ti

(x(i−1))

∣∣∣
x(i−1)=L(i−1)

β
i|i−1
ti

(L(i−1), xi)P(Li ∈ dxi | Gi−10 ).

where Zit(x
(i)) is defined by (4.5).

Proof: We recall the operation Ji defined by (3.17). By (3.18) one has

(6.1) Ji(Xt(L
(i))) =

∫
E

EP[Xt(x
(i))ψi−1t (x(i−1))−1]

ψi−1ti
(x(i−1))−1

∣∣∣
x(i−1)=L(i−1)

P(Li ∈ dxi | Gi−1ti
)

Note that

ψi−1t (x(i−1))−1 =

i−1∏
k=1

α
k|k−1
t (x(k)) =

i−1∏
k=1

β
k|k−1
t (x(k))

β
k|k−1
tk

(x(k))
= Zi−1t (x(i−1))

i−1∏
k=1

1

β
k|k−1
tk

(x(k))
,

where the first equality comes from (3.11), and the second equality follows from (4.4), and the last
equality results from (4.5). Similarly, one has

ψi−1ti
(x(i−1))−1 =

i−1∏
k=1

β
k|k−1
ti

(x(k))

β
k|k−1
tk

(x(k))
= Zi−1ti

(x(i−1))
i−1∏
k=1

1

β
k|k−1
tk

(x(k))
.

Therefore
EP[Xt(x

(i))ψi−1t (x(i−1))−1]

ψi−1ti
(x(i−1))−1

=
EP[Xt(x

(i))Zi−1t (x(i−1)) | Fti ]
Zi−1ti

(x(i−1))
.

By (4.2), we obtain the announced equality. 2

Lemma 6.2 The pricing kernel (3.25) is given, under Assumption 2, by

(6.2) Φti+2(L(i+1)) =
β
i+1|i
ti+2

(L(i+1))

β
i+1|i
ti+1

(L(i+1))
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and

(6.3) Ji+1(Φti+2(L(i+1))) = 1.

Proof: One has

Φti+2(L(i+1)) = (Ji+2 ◦ · · · ◦ Jn)(α
i+1|i
ti+2

(L(i)) · · ·αn|n−1T (L(n))).

By Lemma 6.1, one can express it as the integral of

EP
[
α
i+1|i
ti+2

(x(i+1))
n∏

j=i+2

(
α
j|j−1
tj+1

(x(j))
Zj−1tj+1

(x(j−1))

Zj−1tj
(x(j−1))

β
j|j−1
tj

(x(j))
) ∣∣∣Fti+2

]
x(i+1)=L(i+1)

=
β
i+1|i
ti+2

(L(i+1))

β
i+1|i
ti+1

(L(i+1))
·
E[ZnT (x) | Fti+2 ]x(i+1)=L(i+1)

Zi+1
ti+2

(L(i+1), xi+2)
=
β
i+1|i
ti+2

(L(i+1))

β
i+1|i
ti+1

(L(i+1))
·
Znti+2

(L(i+1), xi+2, · · · , xn)

Zi+1
ti+2

(x(i+2))
.

with respect to P(Li+2 ∈ dxi+2, · · · , Ln ∈ dxn | Gi+1
0 ). By (4.7) we obtain the first equality. We

then apply Lemma 6.1 to write Ji+1(Φti+2(L(i+1))) as

∫
E
EP
[
β
i+1|i
ti+2

(x(i+1))

β
i+1|i
ti+1

(x(i+1))
·
Ziti+2

(x(i))

Ziti+1
(x(i))

β
i+1|i
ti+1

(x(i+1))

∣∣∣∣Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0)

=

∫
E
EP
[
Ziti+2

(x(i))

Ziti+1
(x(i))

β
i+1|i
ti+2

(x(i+1))

∣∣∣∣Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0)

=

∫
E
EP
[
Zi+1
ti+2

(x(i+1))

Ziti+1
(x(i))

∣∣∣∣Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0).

Note that by Lemma 4.2 one has

(6.4) P(L1 ∈ dx1, · · · , Li ∈ dxi | Ft) = Zit(x
(i))P(L1 ∈ dx1, · · · , Li ∈ dxi | F0)

Therefore (Zi+1
t (x(i+1)))t∈[0,T ] is a (F,P)-martingale, so we obtain

Ji+1(Φti+2(L(i+1))) =

∫
E
β
i+1|i
ti+1

(L(i), xi+1)P(Li+1 ∈ dxi+1 | Gi0) = 1.

2

Proof of Proposition 4.1: Let YT (L) be a non-negative GnT -measurable random variable.
Then for t ∈ [0, T ] one has

EP[YT (L) | GIt ] =
n∑
i=1

11[ti,ti+1)(t)

∫
En−i

EP[YT (x)ZnT (x) | Ft]
Zit(x

(i))

∣∣∣∣
x(i)=L(i)

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0).
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Proof: We apply Theorem 3.13 and compute the sequence of random variables (Yti+1(L(i)))ni=0

under Assumption 2. By the backward recursive relation (3.24) and the equalities (6.2) and (6.3),
one has

Yti+1(L(i)) =
Ji+1(Yti+2(L(i+1))Φti+2(L(i+1)))

Ji+1(Φti+2(L(i+1)))
= Ji+1

(
Yti+2(L(i+1))

β
i+1|i
ti+2

(L(i+1))

β
i+1|i
ti+1

(L(i+1))

)
,

where the second equality comes from (3.20). By Lemma 6.1, we can write it as

∫
E
EP
[
Yti+2(x(i+1))

β
i+1|i
ti+2

(x(i+1))

β
i+1|i
ti+1

(x(i+1))
·
Ziti+2

(x(i))

Ziti+1
(x(i))

β
i+1|i
ti+1

(x(i+1))

∣∣∣∣Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0)

=

∫
E
EP
[
Yti+2(x(i+1))

Ziti+2
(x(i))

Ziti+1
(x(i))

β
i+1|i
ti+2

(x(i+1))

∣∣∣∣Fti+1

]
x(i)=L(i)

P(Li+1 ∈ dxi+1 | Gi0).

Therefore we obtain that Yti+1(L(i)) is the integral

∫
En−i

EP
[
YT (x)

n∏
j=i+1

Zj−1tj+1
(x(j−1))

Zj−1tj
(x(j−1))

β
j|j−1
tj+1

(x(j))

∣∣∣∣Fti+1

]
x(i)=L(i)

P(Ln ∈ dxn|Gn−10 ) · · ·P(Li+1 ∈ dxi+1|Gi0)

=

∫
En−i

EP[YT (x)ZnT (x) | Fti+1 ]

Ziti+1
(x(i))

∣∣∣∣
x(i)=L(i)

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0)

We deduce that, for t ∈ [ti, ti+1) one has

EP[Yti+1(x(i))ψti+1(x(i))−1 | Ft]
ψit(x

(i))−1

∣∣∣∣
x(i)=L(i)

=

∫
En−i

EP[YT (x)ZnT (x) | Ft]
Zit(x

(i))

∣∣∣∣
x(i)=L(i)

P(Li+1 ∈ dxi+1, · · · , Ln ∈ dxn | Gi0).

The proposition is thus proved. 2
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