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Abstract This paper proposes different methods to construct conditional survival
processes, i.e, families of martingales decreasing with respect to a parameter. Con-
ditional survival processes play a pivotal role in the density approach for default
risk, introduced by El Karoui et al.[4]. Concrete examples will lead to the construc-
tion of dynamic copulae, in particular dynamic Gaussian copulae. It is shown that
the change of probability measure methodology is a key tool for that construction.
As in Kallianpur and Striebel [10], we apply this methodology in filtering theory to
recover in a straightforward way, the classical results when the signal is a random
variable.

1 Introduction

The goal of this paper is to give examples of the conditional law of a random vari-
able (or a random vector), given a reference filtration, and methods to construct
dynamics of conditional laws, in order to model price processes and/or default risk.
This methodology appears in some recent papers (El Karoui et al. [4], Filipovic et
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al. [7]) and it is important to present techniques to build concrete examples. We
have chosen to characterize the (conditional) law of a random variable through its
(conditional) survival probability or through its (conditional) density, if it exists.

In Section 2, we give the definition of martingale survival processes and density
processes. In Section 3, we give standard examples of conditional laws, in particular
a Gaussian model, and we give methods to construct other ones. In Section 4, we
show that, in the case of random times (i.e., non-negative random variables), the
density methodology can be seen as an extension of the Cox model, and we recall a
result which allows to construct default times having the same intensity and different
conditional laws. We build the change of probability framework in Section 5 and
show how it can be applied to filtering theory for computing the conditional law of
the random variable which represents the signal.

2 Definitions

Let (Ω ,A ,F,P) be a filtered probability space, equipped with a filtration F =
(Ft)t≥0 satisfying the usual conditions, where F∞ ⊂ A and F0 is the trivial fil-
tration. Let E be equal to one of the following spaces: IR, IRd , IR+, or (IR+)d .

A family of (P,F)-martingale survival processes on E is a family of (P,F)-
martingales G.(θ), θ ∈ E such that θ → Gt(θ) is decreasing, and for any θ , G.(θ)
is valued in [0,1]. We have used the standard convention for maps from IRd to IR:
such a map G is decreasing if θ ≤ θ̃ implies G(θ)≥G(θ̃), where θ ≤ θ̃ means that
∀i = 1, . . . ,d, θi ≤ θ̃i.

A (P,F) density process on E is a family g.(θ), θ ∈ E of non-negative, (P,F)-
martingales such that ∫

E
gt(u)du = 1, ∀t, a.s. (1)

where du denotes the Lebesgue measure on E. If there is no ambiguity, we shall
simply say a martingale survival process and a density process.

If G is a family of martingale survival processes on E, absolutely continuous w.r.t
the Lebesgue measure, i.e., Gt(θ) =

∫ ∞
θ gt(u)du, the family g is a density process

(see Jacod [9] for important regularity conditions).
The martingale survival process of an A -measurable random variable X valued

in IRd is the family of càdlàg processes Gt(θ) = P(X > θ |Ft). Obviously, this is a
martingale survival process (it is decreasing w.r.t. θ ). In particular, assuming regu-
larity conditions, the non-negative function g0 such that G0(θ) =

∫ ∞
θ g0(s)ds is the

probability density of X .
If we are given a family of density processes g.(θ), then there exists a random

variable X (constructed on an extended probability space) such that

P(X > θ |Ft) = Gt(θ) =
∫ ∞

θ
gt(u)du, a.s.
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where (with an abuse of notation) P is a probability measure on the extended
space, which coincides with the given probability measure on F. For the construc-
tion, one starts with a random variable X on Ω × IR independent of F, with prob-
ability density g0 and one checks that (gt(X), t ≥ 0) is an F∨ σ(X)-martingale.
Then, setting dQ|Ft∨σ(X) = gt (X)

g0(X)dP|Ft∨σ(X), one obtains, from Bayes’ formula that
Q(X > θ |Ft) = Gt(θ). This construction was important in Grorud and Pontier [8]
and in Amendinger [1] in an initial enlargement of filtration framework for applica-
tion to insider trading.

In the specific case of random times (non-negative random variables), one has to
consider martingale survival processes defined on IR+. They can be deduced from
martingale survival processes on IR by a simple change of variable: if G is the mar-
tingale survival process on IR of the real valued random variable X and h a strictly
increasing function from IR+ to IR, then Gh

t (u) := Gt(h(u)) defines a martingale sur-
vival process on IR+ (corresponding to the change of variable Y = h−1(X)). In the
case where h is differentiable, the density process is gh(u) = gt(h(u))h′(u).

It is important to note that, due to the martingale property, in order to characterize
the family gt(θ) for any pair (t,θ) ∈ (IR+× IR), it suffices to know this family for
any pair (t,θ) such that θ ≤ t. Hence, in what follows, we shall concentrate on
construction for θ ≤ t.

In the paper, the natural filtration of a process Y is denoted by FY .

3 Examples of Martingale Survival Processes

We first present two specific examples of conditional law of an F B
∞ -measurable ran-

dom variable, when FB is the natural filtration of a Brownian motion B. Then we
give two large classes of examples, based on Markov processes and diffusion pro-
cesses.

The first example, despite its simplicity, will allow us to construct a dynamic
copula, in a Gaussian framework; more precisely, we construct, for any t, the (con-
ditional) copula of a family of random times P(τi > ti, i = 1, . . . ,n|Ft) and we can
chose the parameters so that P(τi > ti, i = 1, . . . ,n) equals a given (static) Gaussian
copula. To the best of our knowledge, there are very few explicit constructions of
such a model.
In Fermanian and Vigneron [5], the authors apply a copula methodology, using a
factor Y . However, the processes they use to fit the conditional probabilities P(τi >
ti, i = 1, . . . ,n|Ft ∨σ(Y )) are not martingales. They show that, using some adequate
parametrization, they can produce a model so that P(τi > ti, i = 1, . . . ,n|Ft) are mar-
tingales. Our model will satisfy both martingale conditions.
In [2], Carmona is interested in the dynamics of prices of assets corresponding to a
payoff which is a Bernoulli random variable (taking values 0 or 1), in other words,
he is looking for examples of dynamics of martingales valued in [0,1], with a given
terminal condition. Surprisingly, the example he provides corresponds to the one
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we give below in Section , up to a particular choice of the parameters to satisfy the
terminal constraint.
In a second example, we construct another dynamic copula, again in an explicit way,
with a more complicated dependence.

We then show that a class of examples can be obtained from a Markov model,
where the decreasing property is introduced via a change of variable. In the second
class of examples, the decreasing property is modeled via the dependence of a dif-
fusion through its initial condition. To close the loop, we show that we can recover
the Gaussian model of the first example within this framework.

3.1 A dynamic Gaussian copula model

In this subsection, ϕ is the standard Gaussian probability density, and Φ the Gaus-
sian cumulative function.

We consider the random variable X :=
∫ ∞

0 f (s)dBs where f is a deterministic,
square-integrable function. For any real number θ and any positive t, one has

P(X > θ |F B
t ) = P

(
mt > θ −

∫ ∞

t
f (s)dBs|F B

t

)

where mt =
∫ t

0 f (s)dBs is F B
t -measurable. The random variable

∫ ∞
t f (s)dBs follows

a centered Gaussian law with variance σ2(t) =
∫ ∞

t f 2(s)ds and is independent of
F B

t . Assuming that σ(t) does not vanish, one has

P(X > θ |F B
t ) = Φ

(mt −θ
σ(t)

)
. (2)

In other words, the conditional law of X given F B
t is a Gaussian law with mean mt

and variance σ2(t). We summarize the result1 in the following proposition, and we
give the dynamics of the martingale survival process, obtained with a standard use
of Itô’s rule.

Proposition 1. Let B be a Brownian motion, f an L2 deterministic function, mt =∫ t
0 f (s)dBs and σ2(t) =

∫ ∞
t f 2(s)ds. The family

Gt(θ) = Φ
(mt −θ

σ(t)

)

is a family of FB-martingales, valued in [0,1], which is decreasing w.r.t. θ . Moreover

dGt(θ) = ϕ
(mt −θ

σ(t)

) f (t)
σ(t)

dBt .

1 More results on that model, in an enlargement of filtration setting, can be found in Chaleyat-
Maurel and Jeulin in [3] and Yor [17].
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The dynamics of the martingale survival process can be written

dGt(θ) = ϕ
(
Φ−1(Gt(θ))

) f (t)
σ(t)

dBt . (3)

We obtain the associated density family by differentiating Gt(θ) w.r.t. θ ,

gt(θ) =
1√

2π σ(t)
exp

(
− (mt −θ)2

2σ2(t)

)

and its dynamics

dgt(θ) = −gt(θ)
mt −θ
σ2(t)

f (t)dBt . (4)

Let us emphasize that, starting from (3), it is not obvious to check that the solution
is decreasing with respect to the parameter θ , or, as it is done in [5] and [2], to find
the solution. In the same way, the solution of (4) with initial condition a probability
density g0, is a density process if and only if

∫ ∞
−∞ gt(u)du = 1, or equivalently,∫ ∞

−∞ gt(θ)mt−θ
σ2(t) f (t)dθ = 0. This last equality reduces to

∫ ∞

−∞
gt(θ)(mt −θ)dθ = mt −

∫ ∞

−∞
gt(θ)θdθ = 0

and we do not see how to check this equality if one does not know the explicit
solution.

In order to provide conditional survival probabilities for positive random vari-
ables, we consider X̃ = ψ(X) where ψ is a differentiable, positive and strictly in-
creasing function and let h = ψ−1. The conditional law of X̃ is

G̃t(θ) = Φ
(mt −h(θ)

σ(t)

)
.

We obtain

g̃t(θ) =
1√

2πσ(t)
h′(θ) exp

(
− (mt −h(θ))2

2σ2(t)

)

and

dG̃t(θ) = ϕ
(mt −h(θ)

σ(t)

) f (t)
σ(t)

dBt ,

dg̃t(θ) = −g̃t(θ)
mt −h(θ)

σ(t)
f (t)
σ(t)

dBt .

Introducing an n-dimensional standard Brownian motion B = (Bi, i = 1, . . . ,n)
and a factor Y , independent of FB, gives a dynamic copula approach, as we
present now. For hi an increasing function, mapping IR+ into IR, and setting τi =
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(hi)−1(
√

1−ρ2
i

∫ ∞
0 fi(s)dBi

s +ρiY ), for ρi ∈ (−1,1), an immediate extension of the
Gaussian model leads to

P(τi > ti,∀i = 1, . . . ,n|F B
t ∨σ(Y )) =

n

∏
i=1

Φ


 1

σi(t)


mi

t −
hi(ti)−ρiY√

1−ρ2
i







where mi
t =

∫ t
0 fi(s)dBi

s and σ2
i (t) =

∫ ∞
t f 2

i (s)ds. It follows that

P(τi > ti,∀i = 1, . . . ,n|F B
t ) =

∫ ∞

−∞

n

∏
i=1

Φ


 1

σi(t)


mi

t −
hi(ti)−ρiy√

1−ρ2
i





 fY (y)dy .

Note that, in that setting, the random times (τi, i = 1, . . . ,n) are conditionally inde-
pendent given FB∨σ(Y ), a useful property which is not satisfied in Fermanian and
Vigneron model. For t = 0, choosing fi so that σi(0) = 1, and Y with a standard
Gaussian law, we obtain

P(τi > ti,∀i = 1, . . . ,n) =
∫ ∞

−∞

n

∏
i=1

Φ


−hi(ti)−ρiy√

1−ρ2
i


ϕ(y)dy

which corresponds, by construction, to the standard Gaussian copula (hi(τi) =√
1−ρ2

i Xi +ρiY , where Xi,Y are independent standard Gaussian variables).
Relaxing the independence condition on the components of the process B leads

to more sophisticated examples.

3.2 A Gamma model

Here, we present another model, where the processes involved are no more Gaussian

ones. Consider A(µ)
t :=

∫ t
0 e2B(µ)

s ds where B(µ)
t = Bt +µt, µ being a positive constant.

Matsumoto and Yor [15] have established that A(−µ)
∞ = A(−µ)

t + e2B(−µ)
t Ã(−µ)

∞ where
Ã(−µ)

∞ is independent of F B
t , with the same law as A(−µ)

∞ . The law of A(−µ)
∞ is proved

to be the law of 1/(2γµ), γµ being a Gamma random variable with parameter µ .
The survival probability of A(−µ)

∞ is ϒ (x) = 1
Γ (µ)

∫ 1/(2x)
0 yµ−1e−ydy, where Γ is the

Gamma function. Then, one obtains

Gt(θ) = P(A(−µ)
∞ > θ |F B

t ) = ϒ
(θ −A(−µ)

t

e2B(−µ)
t

)
11

θ>A(−µ)
t

+11
θ≤A(−µ)

t
.

This gives a family of martingale survival processes G, similar to (5), with gamma
structure. It follows that, on {θ > A(−µ)

t }
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dGt(θ) =
1

2µ−1Γ (µ)
e−

1
2 Zt (θ)(Zt(θ))µ dBt

where Zt(θ) = e2B(−µ)
t

θ−A(−µ)
t

(to have light notation, we do not specify that this process Z

depends on µ). One can check that Gt(·) is differentiable w.r.t. θ , so that Gt(θ) =∫ ∞
θ gt(u)du, where

gt(θ) = 11
θ>A(−µ)

t

1
2µΓ (µ)

(Zt(θ))µ+1e−
1
2 Zt (θ)−2B(−µ)

t .

Again, introducing an n-dimensional Brownian motion, a factor Y and the r.vs
αiA

(−µ ,i)
∞ + ρiY , where αi and ρi are constants, will give an example of a dynamic

copula.

3.3 Markov processes

Let X be a real-valued Markov process with transition probability pT (t,x,y)dy =
P(XT ∈ dy|Xt = x), and Ψ a family of functions IR× IR→ [0,1], decreasing w.r.t. the
second variable, such that

Ψ(x,−∞) = 1,Ψ(x,∞) = 0 .

Then, for any T ,

Gt(θ) := E(Ψ(XT ,θ)|F X
t ) =

∫ ∞

−∞
pT (t,Xt ,y)Ψ(y,θ)dy

is a family of martingale survival processes on IR. While modeling (T ;x)-bond
prices, Filipovic et al. [6] have used this approach in an affine process framework.
See also Keller-Ressel et al. [13].

Example 1. Let X be a Brownian motion, and Ψ(x,θ) = e−θx21θ≥0 +1θ≤0. We ob-
tain a martingale survival process on IR+, defined for θ ≥ 0 and t < T as,

Gt(θ) = E
[

exp(−θX2
T )|F X

t
]
=

1√
1+2(T − t)θ

exp
(− θX2

t

1+2(T − t)θ
)

The construction given above provides a martingale survival process G(θ) on the
time interval [0,T ]. Using a (deterministic) change of time, one can easily deduce a
martingale survival process on the whole interval [0,∞[: setting

Ĝt(θ) = Gh(t)(θ)

for a differentiable increasing function h from [0,∞] to [0,T ], and assuming that
dGt(θ) = Gt(θ)Kt(θ)dBt , t < T , one obtains
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dĜt(θ) = Ĝt(θ)Kh(t)(θ)
√

h′(t)dWt

where W is a Brownian motion.
One can also randomize the terminal date and consider T as an exponential random
variable independent of F. Noting that the previous Gt(θ)’s depend on T , one can
write them as Gt(θ ,T ) and consider

G̃t(θ) =
∫ ∞

0
Gt(θ ,z)e−zdz

which is a martingale survival process. The same construction can be done with a
random time T with any given density, independent of F.

3.4 Diffusion-based model with initial value

Proposition 2. Let Ψ be a cumulative distribution function of class C2, and Y the
solution of

dYt = a(t,Yt)dt +ν(t,Yt)dBt , Y0 = y0

where a and ν are deterministic functions smooth enough to ensure that the solution
of the above SDE is unique. Then, the process (Ψ(Yt), t ≥ 0) is a martingale, valued
in [0,1], if and only if

a(t,y)Ψ ′(y)+
1
2

ν2(t,y)Ψ ′′(y) = 0 . (5)

Proof. The result follows by applying Itô’s formula and noting that Ψ(Yt) being a
(bounded) local martingale is a martingale.

We denote by Yt(y) the solution of the above SDE with initial condition Y0 = y.
Note that, from the uniqueness of the solution, y→ Yt(y) is increasing (i.e., y1 > y2
implies Yt(y1)≥ Yt(y2)). It follows that

Gt(θ) := 1−Ψ(Yt(θ))

is a family of martingale survival processes.

Example 2. Let us reduce our attention to the case where Ψ is the cumulative dis-
tribution function of a standard Gaussian variable. Using the fact that Φ ′′(y) =
−yΦ ′(y), Equation (5) reduces to

a(t,y)− 1
2

yν2(t,y) = 0

In the particular the case where ν(t,y) = ν(t), straightforward computation leads to
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Yt(y) = e
1
2

∫ t
0 ν2(s)ds(y+

∫ t

0
e−

1
2

∫ s
0 ν2(u)duν(s)dBs) .

Setting f (s) = −ν(s)exp(− 1
2

∫ s
0 ν2(u)du), one deduces that Yt(y) = y−mt

σ(t) , where

σ2(t) =
∫ ∞

t f 2(s)ds and mt =:
∫ t

0 f (s)dBs, and we recover the Gaussian example of
Subsection 3.1.

4 Density Models

In this section, we are interested in densities on IR+ in order to give models for the
conditional law of a random time τ . We recall the classical constructions of default
times as first hitting time of a barrier, independent of the reference filtration, and
we extend these constructions to the case where the barrier is no more independent
of the reference filtration. It is then natural to characterize the dependence of this
barrier and the filtration by means of its conditional law.

In the literature on credit risk modeling, the attention is mostly focused on the
intensity process, i.e., to the process Λ such that 11τ≤t −Λt∧τ is a G = F ∨H-
martingale, where Ht = σ(t ∧ τ). We recall that the intensity process Λ is the only
increasing predictable process such that the survival process Gt := P(τ > t|Ft) ad-
mits the decomposition Gt = Nte−Λt where N is a local martingale. We recall that
the intensity process can be recovered form the density process as dΛs = gs(s)

Gs(s)
ds

(see [4]). We end the section giving an explicit example of two different martin-
gale survival processes having the same survival processes (hence the intensities are
equal).

4.1 Structural and reduced-form models

In the literature, models for default times are often based on a threshold: the default
occurs when some driving process X reaches a given barrier. Based on this obser-
vation, we consider the random time on IR+ in a general threshold model. Let X
be a stochastic process and Θ be a barrier which we shall precise later. Define the
random time as the first passage time

τ := inf{t : Xt ≥Θ} .

In classical structural models, the process X is an F-adapted process associated with
the value of a firm and the barrier Θ is a constant. So, τ is an F-stopping time. In
this case, the conditional distribution of τ does not have a density process, since
P(τ > θ |Ft) = 11θ<τ for θ ≤ t.

To obtain a density process, the model has to be changed, for example one can
stipulate that the driving process X is not observable and that the observation is a
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filtration F, smaller than the filtration FX , or a filtration including some noise. The
goal is again to compute the conditional law of the default P(τ > θ |Ft), using for
example filtering theory.

Another method is to consider a right-continuous F-adapted increasing process
Γ and to randomize the barrier. The easiest way is to take the barrier Θ as an A -
measurable random variable independent of F, and to consider

τ := inf{t : Γt ≥Θ} . (6)

If Γ is continuous, τ is the inverse of Γ taken at Θ , and Γτ = Θ . The F-conditional
law of τ is

P(τ > θ |Ft) = GΘ (Γθ ), θ ≤ t

where GΘ is the survival probability of Θ given by GΘ (t) = P(Θ > t). We note that
in this particular case, P(τ > θ |Ft) = P(τ > θ |F∞) for any θ ≤ t, which means
that the H-hypothesis is satisfied2 and that the martingale survival processes remain
constant after θ (i.e., Gt(θ) = Gθ (θ) for t ≥ θ ). This result is stable by increasing
transformation of the barrier, so that we can assume without loss of generality that
the barrier is the standard exponential random variable − log(GΘ (Θ)) .

If the increasing process Γ is assumed to be absolutely continuous w.r.t. the
Lebesgue measure with Radon-Nikodým density γ and if GΘ is differentiable, then
the random time τ admits a density process given by

gt(θ) = −(GΘ )′(Γθ )γθ = gθ (θ), θ ≤ t (7)
= E(gθ (θ)|Ft), θ > t.

Example (Cox process model) In the widely used Cox process model, the indepen-
dent barrier Θ follows the exponential law and Γt =

∫ t
0 γsds represents the default

compensator process. As a direct consequence of (7),

gt(θ) = γθ e−Γθ , θ ≤ t.

4.2 Generalized threshold models

In this subsection, we relax the assumption that the threshold Θ is independent
of F∞. We assume that the barrier Θ is a strictly positive random variable whose
conditional distribution w.r.t. F admits a density process, i.e., there exists a family
of Ft ⊗B(IR+)-measurable functions pt(u) such that

GΘ
t (θ) := P(Θ > θ |Ft) =

∫ ∞

θ
pt(u)du . (8)

2 We recall that H-hypothesis stands for any F-martingale is a G = F∨H martingale.
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We assume in addition that the process Γ is absolutely continuous w.r.t. the Lebesgue
measure, i.e., Γt =

∫ t
0 γsds. We still consider τ defined as in (6) by τ = Γ−1(Θ) and

we say that a random time constructed in such a setting is given by a generalized
threshold.

Proposition 3. Let τ be given by a generalized threshold. Then τ admits the density
process g(θ) where

gt(θ) = γθ pt(Γθ ), θ ≤ t. (9)

Proof. By definition and by the fact that Γ is strictly increasing and absolutely con-
tinuous, we have for t ≥ θ ,

Gt(θ) := P(τ > θ |Ft) = P(Θ >Γθ |Ft) = GΘ
t (Γθ ) =

∫ ∞

Γθ
pt(u)du =

∫ ∞

θ
pt(Γu)γudu,

which implies gt(θ) = γθ pt(Γθ ) for t ≥ θ .
Obviously, in the particular case where the threshold Θ is independent of F∞,

we recover the classical results (7) recalled above.
Conversely, if we are given a density process g, then it is possible to construct a

random time τ by a generalized threshold, that is, to find Θ such that the associated
τ has g as density, as we show now. It suffices to define τ = inf{t : t ≥Θ} where Θ
is a random variable with conditional density pt = gt . Of course, for any increasing
process Γ , τ = inf{t : Γt ≥ ∆}where ∆ := ΓΘ is a different way to obtain a solution!

4.3 An example with same survival processes

We recall that, starting with a survival martingale process G̃t(θ), one can construct
other survival martingale processes Gt(θ) admitting the same survival process (i.e.,
G̃t(t) = Gt(t)), in particular the same intensity. The construction is based on the
general result obtained in Jeanblanc and Song [11]: for any supermartingale Z val-
ued in [0,1[, with multiplicative decomposition Ne−Λ , where Λ is continuous, the
family

Gt(θ) = 1− (1−Zt)exp
(
−

∫ t

θ

Zs

1−Zs
dΛs

)
0 < θ ≤ t ≤ ∞,

is a martingale survival process (called the basic martingale survival process) which
satisfies Gt(t) = Zt and, if N is continuous, dGt(θ) = 1−Gt (θ)

1−Zt
e−Λt dNt . In particular,

the associated intensity process is Λ (we emphasize that the intensity process does
not contain enough information about the conditional law).
We illustrate this construction in the Gaussian example presented in Section 3.1
where we set Yt = mt−h(t)

σ(t) . The multiplicative decomposition of the supermartingale

G̃t = P(τ > t|F B
t ) is G̃t = Nt exp

(−∫ t
0 λsds

)
where
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dNt = Nt
ϕ(Yt)

σ(t)Φ(Yt)
dmt , λt =

h′(t)ϕ(Yt)
σ(t)Φ(Yt)

.

Using the fact that G̃t(t) = Φ(Yt), one checks that the basic martingale survival
process satisfies

dGt(θ) = (1−Gt(θ))
f (t)ϕ(Yt)

σ(t)Φ(−Yt)
dBt , t ≥ θ , Gθ (θ) = Φ(Yθ )

which provides a new example of martingale survival processes, with density pro-
cess

gt(θ) = (1−Gt)e
−∫ t

θ
Gs

1−Gs λsds Gθ λθ
1−Gθ

, θ ≤ t.

Other constructions of martingale survival processes having a given survival process
can be found in [12], as well as constructions of local-martingales N such that Ne−Λ

is valued in [0,1] for a given increasing continuous process Λ .

5 Change of Probability Measure and Filtering

In this section, our goal is to show how, using a change of probability measure,
one can construct density processes. The main idea is that, starting from the (un-
conditional) law of τ , we construct a conditional density in a dynamic way using
a change of probability. This methodology is a very particular case of the general
change of measure approach developed in [4]. Then, we apply the idea of change of
probability framework to a filtering problem (due to Kallianpur and Striebel [10]),
to obtain the Kallianpur-Striebel formula for the conditional density (see also Meyer
[16]). Our results are established in a very simple way, in a general filtering model,
when the signal is a random variable, and contain, in the simple case, the results of
Filipovic et al. [7]. We end the section with the example of the traditional Gaussian
filtering problem.

5.1 Change of measure

One starts with the elementary model where, on the filtered probability space
(Ω ,A ,F,P), an A -measurable random variable X is independent from the refer-
ence filtration F = (Ft)t≥0 and its law admits a density probability g0, so that

P(X > θ |Ft) = P(X > θ) =
∫ ∞

θ
g0(u)du .
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We denote by GX = F∨σ(X) the filtration generated by F and X .
Let (βt(u), t ∈ IR+) be a family of positive (P,F)-martingales such that β0(u) = 1
for all u ∈ IR. Note that, due to the assumed independence of X and F, the pro-
cess (βt(X), t ≥ 0) is a GX -martingale and one can define a probability measure
Q on (Ω ,G X

t ), by dQ = βt(X)dP. Since F is a subfiltration of GX , the positive
F-martingale

mβ
t := E(βt(X)|Ft) =

∫ ∞

0
βt(u)g0(u)du

is the Radon-Nikodým density of the measure Q, restricted to Ft with respect to P
(note that mβ

0 = 1). Moreover, the Q-conditional density of X with respect to Ft can
be computed, from the Bayes’ formula

Q(X ∈ B|Ft) =
1

E(βt(X)|Ft)
E(1B(X)βt(X)|Ft) =

1

mβ
t

∫

B
βt(u)g0(u)du

where we have used, in the last equality the independence between X and F, under
P. Let us summarize this simple but important result:

Proposition 4. If X is a r.v. with probability density g0, independent from F under P,
and if Q is a probability measure, equivalent to P on F∨σ(X) with Radon-Nikodým
density βt(X), t ≥ 0, then the (Q,F) density process of X is

gQ
t (u)du := Q(X ∈ du|Ft) =

1

mβ
t

βt(u)g0(u)du (10)

where mβ is the normalizing factor mβ
t =

∫ ∞
−∞ βt(u)g0(u)du. In particular

Q(τ ∈ du) = P(τ ∈ du) = g0(u)du .

The right-hand side of (10) can be understood as the ratio of βt(u)g0(u) (the
change of probability times the P probability density ) and a normalizing coeffi-
cient mβ

t . One can say that (βt(u)g0(u), t ≥ 0) is the un-normalized density, ob-
tained by a linear transformation from the initial density. The normalization factor
mβ

t =
∫

βt(u)g0(u)du introduces a nonlinear dependance of gQ
t (u) with respect to

the initial density. The example of the filtering theory provides an explicit form to
this dependence when the martingales βt(u) are stochastic integrals with respect to
a Brownian motion.

Remark 1. We present here some important remarks.
(1) If, for any t, mβ

t = 1, then the probability measures P and Q coincide on F. In
that case, the process (βt(u)g0(u), t ≥ 0) is a density process.
(2) Let G = (Gt)t≥0 be the usual right-continuous and complete filtration in the
default framework (i.e. when X = τ is a non negative r.v.) generated by Ft∨σ(τ∧t).
Similar calculation may be made with respect to Gt . The only difference is that the
conditional distribution of τ is a Dirac mass on the set {t ≥ τ}. On the set {τ > t},
and under Q, the distribution of τ admits a density given by:
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Q(τ ∈ du|Gt) = βt(u)g0(u)
1∫ ∞

t βt(θ)g0(θ)dθ
du .

(3) This methodology can be easily extended to a multivariate setting: one starts
with an elementary model, where the τi, i = 1, . . . ,d are independent from F, with
joint density g(u1, . . . ,ud). With a family of non-negative martingales β (θ1, . . . ,θd),
the associated change of probability provides a multidimensional density process.

5.2 Filtering theory

The change of probability approach presented in the previous subsection 5.1 is based
on the idea that one can restrict our attention to the simple case where the random
variable is independent from the filtration and use a change of probability. The same
idea is the building block of filtering theory as we present now.

Let W be a Brownian motion on the probability space (Ω ,A ,P), and X be a
random variable independent of W , with probability density g0. We denote by

dYt = a(t,Yt ,X)dt +b(t,Yt)dWt (11)

the observation process, where a and b are smooth enough to have a solution and
where b does not vanish. The goal is to compute the conditional density of X with
respect to the filtration FY . The way we shall solve the problem is to construct a
probability Q, equivalent to P, such that, under Q, the signal X and the observation
FY are independent, and to compute the density of X under P by means of the
change of probability approach of the previous section. It is known in nonlinear
filtering theory as the Kallianpur-Striebel methodology [10], a way to linearize the
problem.
Note that, from the independence assumption between X and W , we see that W is a
GX = FW ∨σ(X)-martingale under P.

5.2.1 Simple case

We start with the simple case where the dynamics of the observation is

dYt = a(t,X)dt +dWt .

We assume that a is smooth enough so that the solution of

dβt(X) =−βt(X)a(t,X)dWt , β0(X) = 1

is a (P,GX )-martingale, and we define a probability measure Q on G X
t by dQ =

βt(X)dP. Then, by Girsanov’s theorem, the process Y is a (Q,GX )-Brownian mo-
tion, hence is independent from G X

0 = σ(X), under Q. Then, we apply our change
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of probability methodology, writing

dP =
1

βt(X)
dQ =: `t(X)dQ

with
d`t(X) = `t(X)a(t,X)dYt , `0(X) = 1

(in other words, `t(u) = 1
βt (u) = exp

(∫ t
0 a(s,u)dYs− 1

2
∫ t

0 a2(s,u)ds
)
) and we get

from Proposition 4 that the density of X under P, with respect to FY , is gt(u), given
by

P(X ∈ du|FY
t ) = gt(u)du =

1
m`

t
g0(u)`t(u)du

where m`
t = EQ(`t(X)|FY

t ) =
∫ ∞
−∞ `t(u)g0(u)du. Since

dm`
t =

(∫ ∞

−∞
`t(u)a(t,u)g0(u)du

)
dYt = m`

t

(∫ ∞

−∞
gt(u)a(t,u)du

)
dYt

and setting

ât := E(a(t,X)|FY
t ) =

∫ ∞

−∞
gt(u)a(t,u)du ,

Girsanov’s theorem implies that the process B given by

dBt = dYt − âtdt = dWt +(a(t,X)− ât)dt

is a (P,FY ) Brownian motion (it is the innovation process). From Itô’s calculus, it is
easy to show that the density process satisfies the nonlinear filtering equation

dgt(u) = gt(u)
(

a(t,u)− 1
m`

t

∫ ∞

−∞
dyg0(y)a(t,y)`t(y)

)
dBt

= gt(u)(a(t,u)− ât)dBt . (12)

Remark 2. Observe that conversely, given a solution gt(u) of (12), and the process
µ solution of dµt = µt âtdYt , then ht(u) = µtgt(u) is solution of the linear equation
dht(u) = ht(u)a(t,u)dYt .

5.2.2 General case

Using the same ideas, we now solve the filtering problem in the case where the
observation follows (11). Let β (X) be the GX local martingale, solution of

dβt(X) = βt(X)σt(X)dWt , β0(X) = 1

with σt(X) = − a(t,Yt ,X)
b(t,Yt )

. We assume that a and b are smooth enough so that β is a
martingale. Let Q be defined on G X

t by dQ = βt(X)dP.
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From Girsanov’s theorem, the process Ŵ defined as

dŴt = dWt −σt(X)dt =
1

b(t,Yt)
dYt

is a (Q,GX )-Brownian motion, hence Ŵ is independent from G X
0 = σ(X). Being

FY -adapted, the process Ŵ is a (Q,FY )-Brownian motion, X is independent from
FY under Q, and, as mentioned in Proposition 4, admits, under Q, the probability
density g0.
We now assume that the natural filtrations of Y and Ŵ are the same. To do so, note
that it is obvious that FŴ ⊆ FY . If the SDE dYt = b(t,Yt)dŴt has a strong solution
(e.g., if b is Lipschitz, with linear growth) then FY ⊆ FŴ and the equality between
the two filtrations holds.
Then, we apply our change of probability methodology, with FY as the reference
filtration, writing dP = `t(X)dQ with d`t(X) = −`t(X)σt(X)dŴt (which follows
from `t(X) = 1

βt (X) ) and we get that the density of X under P, with respect to FY is
gt(u) given by

gt(u) =
1

m`
t
g0(u)`t(u)

with dynamics

dgt(u) = −gt(u)
(

σt(u)− 1
m`

t

∫ ∞

−∞
dyg0(y)σt(y)`t(y)

)
dBt

= gt(u)
(

a(t,Yt ,u)
b(t,Yt)

− 1
b(t,Yt)

∫ ∞

−∞
dygt(y)a(t,Yt ,y)

)
dBt

= gt(u)
(

a(t,Yt ,u)
b(t,Yt)

− ât

b(t,Yt)

)
dBt . (13)

Here B is a (P,FY ) Brownian motion (the innovation process) given by

dBt = dWt +
(

a(t,Yt ,X)
b(t,Yt)

− ât

b(t,Yt)

)
dt ,

where ât = E(a(t,Yt ,X)|FY
t ).

Proposition 5. If the signal X has probability density g0(u) and is independent from
the Brownian motion W, and if the observation process Y follows

dYt = a(t,Yt ,X)dt +b(t,Yt)dWt ,

then, the conditional density of X given FY
t is

P(X ∈ du|FY
t ) = gt(u)du =

1
m`

t
g0(u)`t(u)du (14)
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where `t(u) = exp
(∫ t

0
a(s,Ys,u)
b2(s,Ys)

dYs− 1
2

∫ t
0

a2(s,Ys,u)
b2(s,Ys)

ds
)

, m`
t =

∫ ∞
−∞ `t(u)g0(u)du, and

its dynamics is given in (13).

5.3 Gaussian filter

We apply our results to the well known case of Gaussian filter. Let W be a Brownian
motion, X a random variable (the signal) with density probability g0 a Gaussian law
with mean m0 and variance γ0, independent of the Brownian motion W and let Y
(the observation) be the solution of

dYt = (a0(t,Yt)+a1(t,Yt)X)dt +b(t,Yt)dWt ,

Then, from the previous results, the density process gt(u) is of the form

1
m`

t
exp

(∫ t

0

a0(s,Ys)+a1(s,Ys)u
b2(s,Ys)

dYt − 1
2

∫ t

0

(
a0(s,Ys)+a1(s,Ys)u

b(s,Ys)

)2

ds

)
g0(u)

The logarithm of gt(u) is a quadratic form in u with stochastic coefficient, so that
gt(u) is a Gaussian density, with mean mt and variance γt (as proved already by
Liptser and Shiryaev [14]). A tedious computation, purely algebraic, shows that

γt =
γ0

1+ γ0
∫ t

0
a2

1(s,Ys)
b2(s,Ys)

ds
, mt = m0 +

∫ t

0
γs

a1(s,Ys)
b(s,Ys)

dBs

with dBt = dWt +
a1(t,Yt )
b(t,Yt )

(X −E(X |FY
t ))dt.

Back to the Gaussian example Section 3.1: In the case where the coefficients of
the process Y are deterministic functions of time, i.e.,

dYt = (a0(t)+a1(t)X)dt +b(t)dWt

the variance γ(t) is deterministic and the mean is an FY -Gaussian martingale

γ(t) =
γ0

1+ γ0
∫ t

0 α2(s)ds
, mt = m0 +

∫ t

0
γ(s)α(s)dBs

where α = a1/b. Furthermore, FY = FB.
Choosing f (s) = γ(s)a1(s)

b(s) in the example of Section 3.1 leads to the same conditional
law (with m0 = 0); indeed, it is not difficult to check that this choice of parameter
leads to

∫ ∞
t f 2(s)ds = σ2(t) = γ(t) so that the two variances are equal.

The similarity between filtering and the example of Section 3.1 can be also ex-
plained as follows. Let us start from the setting of Section 3.1 where X =

∫ ∞
0 f (s)dBs

and introduce GX = FB ∨σ(X), where B is the given Brownian motion. Standard
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results of enlargement of filtration (see Jacod [9]) show that

Wt := Bt +
∫ t

0

ms−X
σ2(s)

f (s)ds

is a GX -BM, hence is a GW -BM independent of X . So, the example presented in
Section 3.1 is equivalent to the following filtering problem: the signal is X a Gaus-
sian variable, centered, with variance γ(0) =

∫ ∞
0 f 2(s)ds and the observation

dYt = f (t)Xdt +
(∫ ∞

t
f 2(s)ds

)
dWt = f (t)Xdt +σ 2(t)dWt .

References

1. Amendinger, J. (1999): “Initial enlargement of filtrations and additional information in fi-
nancial markets”, Phd thesis, Technischen Universität Berlin.

2. Carmona, R. (2010): “Emissions option pricing”, slides, Heidelberg.
3. Chaleyat-Maurel, M. and T. Jeulin (1985): “Grossissement Gaussien de la filtration Brown-

ienne”, Lecture Notes in Mathematics, 1118, Springer-Verlag, pp. 59-109.
4. El Karoui, N., M. Jeanblanc and Y. Jiao (2010): “What happens after a default: the condi-

tional density approach”, Stochastic Processes and their Applications, 120, pp. 1011-1032.
5. Fermanian, J.D., and O. Vigneron (2010): “On break-even correlation: the way to price

structured credit derivatives by replication”, Preprint.
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