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Abstract We study the gain of an insider having private information which concerns
the default risk of a counterparty. More precisely, the default time τ is modelled as
the first time a stochastic process hits a random threshold L. The insider knows this
threshold (as it can be the case for themanager of the counterparty) and this information
is modelled by using an initial enlargement of filtration. The standard investors only
observe the value of the threshold at the default time and estimate the default event
by its conditional density process. The financial market consists of a risk-free asset
and a risky asset whose price is exposed to a sudden jump at the default time of the
counterparty. All investors aim to maximize the expected utility from terminal wealth
given their own information at the initial date.We solve the optimizationproblemunder
short-selling and buying constraints and we compare through numerical illustrations
the optimal processes for the insider and the standard investors.
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1 Introduction

The insider’s optimal investment is a classical problem where an investor possessing
some extra flow of information aims to maximize the expected utility on the final
value of her portfolio. As the insider has more information, she has access to a larger
set of available trading strategies, leading to a higher expected utility from terminal
wealth. In the literature, the following interesting question has been studied: what is
the cost of the extra information? From an indifference point of view, we search for
the value at which the investor accepts to buy the information at the initial time, that is,
the amount of money she is ready to pay such that this cost is offset by the increase of
the maximal expected utility. This is the approach adopted by Amendinger et al. [1],
where the authors study the value of an initial information in the setting of a complete
default free market. The extra information they consider is a terminal information
distorted by an independent noise, for example, a noisy signal of a functional of the
final value of the assets. We adopt a more direct manner: we are interested in the gain
of the insider fromher investment strategy on the portfolio compared to other investors
not having access to the extra information. The originality of our paper is to study this
problem in the context of credit risks: the insider’s information concerns the default
risk of a counterparty firm.

During the financial crisis, the counterparty default has become an important
source of risk that should be taken into account. Jiao and Pham [15] have consid-
ered an optimal investment problem where the risky asset in the portfolio is subjected
to the default risk of a counterparty firm and its value may suffer a sudden jump at the
counterparty default time τ . This paper is a good benchmark for our study in order
to quantify the value of the extra information. In [15], the accessible information for
a standard investor is described as in the classical credit risk modelling by Bielecki
and Rutkowski [4], using the progressive enlargement of a reference “default-free”
filtration F = (Ft )t≥0 by the default τ . To analyze the impact of default, the default
density framework developed in El Karoui et al. [5] has been adopted.

This current paper concentrates on an insider in comparison with a standard in-
vestor. Both agents can invest in the same risk-free asset and risky one and they observe
the samemarket price for each asset. However, the insider possessesmore information
on the risky asset since it is influenced by the counterparty default onwhich the insider
has additional knowledge. Due to the extra information, the insider may gain larger
profit. The insider’s information is modelled by using an initial enlargement of filtra-
tion as in [1] and in Grorud and Pontier [7]. More precisely, in the credit risk context,
we model the default time τ as the first time that a stochastic process hits a random
barrier L. The insider knows the barrier from the initial time and the other investors
only see its value at the default time. Besides, since the dynamics of the stock prices
are modified at the counterparty default time, the extra information of an insider with
respect to a standard investor is twofold: the knowledge of L and the knowledge of
the modified dynamics of the stock price. In our framework, this total information is
called the insider’s information, or the full information in Hillairet and Jiao [9], and
it is formally described by the initially enlarged filtration.

We shall consider the insider’s optimization problem in parallel with the one
studied in [15]. The canonical decomposition of processes adapted to the enlarged
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filtration induces to specify the investment strategies on the two following sets: the
before-default one {t < τ } and the after-default one {t ≥ τ }, which is a similar point
to [15]. However, due to the extra knowledge on the default barrier L, the insider’s
strategy depends on L before the counterparty default, which is not the case for the
standard investor. If the default occurs, the insider’s strategywill depend on the default
time τ . From the methodology point of view, the main difference here is that for the
insider, the default time is modelled as in the classical structural approachmodel since
the random barrier L is known, so that τ becomes a predictable stopping time with
respect to the insider’s filtration. Therefore, the default density hypothesis, which is
crucial in [15], fails to hold for the insider and we can no longer adopt the conditional
density approach in this situation.

We apply the theory of initial enlargement of filtration, assuming that the condi-
tional law of L given Ft is equivalent to the law of L. The corresponding Radon–
Nikodým derivative process, (pt (.), t ≥ 0) will play a key role in our methodology.

The paper is organized as follows. In section 2, we introduce the model for the
counterparty default. We define and compare the informational structure of an insider
with respect to a standard investor, who estimates the default event through its condi-
tional density, and aMerton investor, who does not take into account the eventuality of
the counterparty default. In Sect. 3, we present the insider’s optimal investment prob-
lem and we decompose it into an after-default one and a global before-default one,
using the Radon Nikodym derivative process. Following the practice of regulation on
financial markets exposed to the counterparty risk, we assume that the short-selling is
prohibited for all investors and we discuss the possibility and the impact of relaxing
this short-selling constraint. In Sect. 4 we solve the two optimization problems: the
after-default one through duality methods in a default free complete market, and the
global before-default one through dynamic programming approach. To make compar-
ison with the standard investor in [15], we choose to consider CRRA utility function.
In Sect. 5, we perform through numerical illustrations the comparison of the optimal
value function and wealth process for insider, standard and Merton investors. This
gives a numerical study of the gain of the insider, compared to a standard investor.

2 Counterparty default model and information

We consider the default of a counterparty, that will induce a jump in the asset value
of a related firm. The model for the counterparty default is a general and standard
model in the credit risk analysis. Let us fix a probability space (Ω,A,P) equipped
with a reference filtration F = (Ft )t≥0 which represents the “default-free” informa-
tion. Without loss of generality, we assume that all the filtrations we deal with in the
following satisfy the usual conditions. A finite horizon T is fixed and let τ be a positive
random time denoting the default time of the counterparty, which is not necessarily
an F-stopping time.

• The default model
We consider the default risk of the counterparty in a general barrier model. Let

(λt , t ≥ 0) be a positive F-adapted process and Λt =
∫ t
0 λsds. We model the default
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time as the first passage time of the processΛ to a positive random barrier L, i.e.,

τ = inf{t ≥ 0 : Λt ≥ L}.

In the widely used Cox process model, Λ is the compensator process of default, L
is independent of F∞ and follows the uni-exponential law. In the classical structural
default models, Λ can represent the cumulated losses of the counterparty and L is
constant or deterministic, thus τ is an F-stopping time. In our model, the default
threshold L is a positive A-measurable random variable which can be correlated with
the reference filtration F. Let us emphasize that this default model is known to both an
insider and a standard investor. In particular, all investors have the full knowledge of
the F-conditional distributions of the random variable τ and they observe processes
S andΛ. The model with a random threshold L represents the market view about the
joint dynamics of the default process and S.
• Information of the insider

Besides the information on the “default-free” market, we suppose that the insider
has complete information on L: this is the case of the counterparty firm’smanagerwho
determines the default threshold according to the financial situation on the market.
The choice of the threshold will also depend on the anticipation of the manager on the
economic health of her firm. For example, the manager has inside information about
the firm’s statement of account which will be officially published only in a future date
and she may use this information to determine the default threshold L. The manager
chooses the level of L at the initial time and keep this benchmark until the date T .1
For the insider, the information is modeled as the initial enlargement of the filtration
F by L and is denoted by GM = (GMt )t≥0, GMt = Ft ∨ σ (L).
• Information of the standard investor

A standard investor on themarket observeswhether the default has occurred or not
and if so, the default time τ , together with the information contained in the filtration
F. Mathematically, this information is represented by the progressive enlargement
of filtration F by τ , or more precisely, by the filtration G = (Gt )t≥0 where Gt =
Ft ∨Dt , Dt = σ (11τ≤s, s ≤ t). This is the standard credit risk modeling for a market
investor as in [4]. The standard investor will estimate the default event through the
conditional density of τ with respect to the filtration F and thus establishes a link with
the conditional law of L (cf. Remark 4.3).

The investor’s information is included in the insider’s information flow. We have
Gt ⊆ GMt for any t ≥ 0. In fact, before the default τ , i.e., on the set {t < τ }, the
insider has additional information on L, so her information GMt is in general strictly
larger than Gt . After the default occurs, both of them observe the default event and
subsequently the value of L so that they have equal information flow.
• Information of a Merton type investor

In a classical optimization problem, the default event is not taken into account.
This corresponds to the Merton’s problem, solved in [16] for CRRA and CARA
utility functions and extended for more general utility functions in [17]. In this case,
the filtration F represents the available information for the Merton type investor.

1 We let for a future work the case where the threshold can be adjusted dynamically.
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3 Insider’s optimization problem

3.1 Portfolio investment strategy and wealth process

A finite horizon T being fixed, all investment strategies take place from time 0 to time
T . The insider has access to the same financial market as the standard investor, more
precisely, she can invest in two types of financial assets. The first one is a risk-free
bond with strictly positive values. We choose it as the numéraire and assume, without
loss of generality that the value of this bond is equal to 1. The other asset is a risky
one which is affected by the default risk of the counterparty firm on which the insider
has extra information.

The price of this risky asset is observable by all investors on market at any time
t ∈ [0, T ]. Since it is subject to the counterparty default risk, the price process may
have a jump at the default time τ . Thus it is modelled by aG-adapted process S, which
admits the decomposition form (cf. the result of Jeulin [14] Lemma 4.4 that we recall
in Annex) :

St = S0t 11t<τ + S1t (τ )11t≥τ , 0 ≤ t ≤ T

where S0 is F-adapted and S1(·) is F ⊗ B(R+)-adapted, B(R+) being the Borel σ -
algebra. We suppose that the asset admits a contagious jump at the default time of the
counterparty, that is,

S1θ (θ) = S0θ−(1− γθ ).

Theprocessγ isF-adapted and represents the proportional jump at default.We suppose
γ < 1, so that the risky asset price remains strictly positive after the counterparty
default. The case of a positive jump (gain) of Scorresponds to a negativeγ (for example
the case of a duopoly competition) and conversely, a positive γ induces a contagious
loss of S (for example if the asset is positively correlated with the counterparty). We
suppose that the sign of the jump γ remains unchanged and is known by all investors.

We consider the trading strategy of the insider, who adjusts her portfolio of assets
according to her information accessibility. Therefore, her investment strategy process
is characterized by a GM -predictable process π which represents the proportion of
wealth invested in the risky asset and is of the form (cf. [14] Lemma 3.13 and 4.4)

πt = 11t≤τπ
0
t (L) + 11t>τπ

1
t (τ ),

where π0(·) and π1(·) are P(F) ⊗ B(R+)-measurable processes, P(F) being the
predictable σ -algebra associated to the filtration F. Starting from an initial wealth
X0 ∈ R+, the total wealth of the insider’s portfolio is then a GM -adapted process
given by

Xt = 11t<τ X0t (L) + 11t≥τ X1t (τ )

where the before-default wealth process satisfies the self-financing equation

dX0t (L) = X0t (L)π0t (L)
dS0t
S0t

, 0 ≤ t ≤ T
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and after the default τ , the wealth process has a change of regime in its dynamics and
satisfies

dX1t (τ ) = X1t (τ )π1t (τ )
dS1t (τ )

S1t (τ )
, t ∈ [[τ, T ]].

At the default time, the wealth jumps. Therefore, at time τ , the initial value of the
after-default wealth process is

X1τ (τ ) = X0τ−(L)
(
1− π0τ (L)γτ

)
. (3.1)

We suppose that π0τ (L)γτ < 1, so that the wealth remains strictly positive after the
jump due to the counterparty default.

We consider the following dynamics for the asset price S on the before-default set
{t < τ } for S0 and on the after-default set {t ≥ τ } for S1:

dS0t = S0t (µ
0
t dt + σ 0t dWt ), 0 ≤ t ≤ T

dS1t (θ) = S1t (θ)(µ1t (θ)dt + σ 1t (θ)dWt ), θ ≤ t ≤ T

where the coefficients µ0 and σ 0 are F-adapted processes, µ1(θ) and σ 1(θ) are
F ⊗ B(R+)-adapted processes, and W is an F-Brownian motion. In addition, we
suppose the integrability condition

∫ T

0

∣∣∣
µ0t
σ 0t

∣∣∣
2
dt +

∫ T

θ

∣∣∣
µ1t (θ)

σ 1t (θ)

∣∣∣
2
dt +

∫ T

0
|σ 0t |2dt +

∫ T

θ
|σ 1t (θ)|2dt < ∞.

So the values of the before-default and after-default wealth satisfy the dynamics

dX0t (L) = X0t (L)π0t (L)(µ0t dt + σ 0t dWt ), 0 ≤ t ≤ T (3.2)
dX1t (τ ) = X1t (τ )π1t (τ )(µ1t (τ )dt + σ 1t (τ )dWt ), t ∈ [[τ, T ]] (3.3)

and the jump at default of the wealth process is given by the equality (3.1).
We discuss firstly the constraints on the investment in the risky assets. On the

one hand, in practice, there are buying constraints: for diversification and regulation
reasons, investors are limited to invest in a given asset below a certain level. Otherwise,
theymustmake reporting to the authorities. On the other hand, after the financial crisis
in 2008, regulators prohibited short-selling on several equitymarkets.Nowadays, these
restrictions have been relaxed for liquidity reason. Based on these observations, in our
framework, the regulators are concerned about the default risk of the counterparty
and its impact on the risky asset. Thus they impose a buying constraint δb and they
forbid short-selling as long as the default has not occurred yet. After the counterparty
default, those restrictions will be relaxed.

This motivates us to propose the following admissible trading strategy familyAL
as the set of pairs (π0(·),π1(·)), whereπ0(·) andπ1(·) areP(F)⊗B(R+)-measurable
processes such that

∀ l > 0,
( ∫ τl∧T

0
|π0t (l)σ

0
t |2dt +

∫ T

τl∧T
|π1t (τl)σ

1
t (τl)|

2dt
)

< ∞, a.s.

0 ≤ π0 ≤ δb and π0τl (l)γτl < 1,
where τl is the F-stopping time defined by τl := inf{t : Λt ≥ l}.
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Remark 3.1 LetAdenote the set of allGM-predictable processesπ such that
∫ T
0 |πtσt |2dt < ∞,

0 ≤ π11{t≤τ } ≤ δb andπτγτ < 1 (whereσt = σ 0t 11{τ>t}+σ 1t (τ )11{τ≤t}). If (π0(·),π1(·))
is an element in AL , then (πt = π0t (L)11τ≥t + π1t (τL)11τ<t , t ≥ 0) is a processus in
the setA. Conversely, given a process π ∈ A, there exists a pair (π0(·),π1(·)) ∈ AL
such that πt = π0t (L)11τ≥t + π1t (τL)11τ<t for any t ≥ 0, thanks to Lemma 6.1 (in
Annex).

3.2 The optimization problem

The insider has the objective to maximize her expected utility function on the terminal
wealth of her portfolio. LetU be a utility function defined on (0,+∞), strictly increas-
ing, strictly concave and of classC1on (0,+∞), and satisfying limx→0+ U ′(x) = +∞
and limx→∞U ′(x) = 0.

In the usual setting with no initial information, the optimization problem is for-
mulated as

V0 = sup
π∈AL

E[U(XT )]. (3.4)

This is the optimization problem studied in [15] which has already solved the case
of a standard investor whose admissible strategies are G-predictable. Note the slight
difference that [15] puts either no short-sellingnor buying constraints on the investment
strategies.

For the insider, the initial σ -field is non-trivial and this initial information has to
be taken into consideration for the formulation of the optimization problem:

ess sup
π∈AL

E[U(XT )|GM0 ], (3.5)

where GM0 = σ (L). The link between those two optimization problems (3.4) and (3.5)
is given by [1]: if the supremum in (3.5) is attained by some strategy in AL , then the
ω-wise optimum is also a solution to (3.4). Although the supremum is not necessarily
attained in our problem, we will see in Proposition 4.11 that there exists a sequence
of admissible strategies πn such that E[U(Xπn

T )|GM0 ] converges in L1 to (3.5) and we
can prove that for the same sequence, E[U(Xπn

T )] converges to V0.
The method to solve the initial optimization problem (3.5), similar as in [15], is to

reduce the problem in an incomplete market into two problems : the after-default and
before-default ones. Nevertheless, the approach we adopt here is different since the
random time τ is not a totally inaccessible random time for the insider and we can no
longer use the conditional default density approach, which is the key method in [15],
to solve the problem.

Our approach will use the theory of initial enlargement of filtration (also called
the strong information modeling in [2]) by the random default barrier L known by the
insider.More precisely, we introduce a family ofF-stopping times τl = inf{t : Λt ≥ l}
for all l > 0 which are possible realizations of L and we work under an equivalent
probability measure PL under which L is independent to FT . Thus in our framework,
we shall need the Radon–Nikodým derivative process pt(L) which is the density of
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the historical probabilitymeasurePwith respect to this equivalent probabilitymeasure
PL and it will play a similar role as the default density process in [15].

This probability density hypothesis is given below. It is a standard hypothesis in
the theory of initial enlargement of filtration due to Jacod [12] and [13].

Hypothesis 3.2 We assume that L is an A-measurable random variable with values
in ]0,+∞[, which satisfies the assumption :

P(L ∈ · |Ft )(ω) ∼ P(L ∈ ·), ∀t ∈ [0, T ], P − a.s..

We denote by PL
t (ω, dx) a regular version of the conditional law of L givenFt and by

PL the law of L (under the probabilityP). According to [13], there exists a measurable
version of the conditional density

pt(x)(ω) =
dPL

t
d PL (ω, x)

which is a positive (F,P)-martingale. It is proved in [7] that Hypothesis 3.2 is satisfied
if and only if there exists a probabilitymeasure equivalent toP and underwhichFT and
σ (L) are independent. Among such equivalent probability measures, the probability
PL defined by the Radon–Nikodým derivative process

EPL

[ dP
dPL

∣∣∣GMt
]

= pt (L)

is the only one that is identical to P on F∞. In the particular case of L independent
of F (that is the counterparty firm’s manager fixes an arbitrary threshold according to
the law PL without taking into account the economic perspectives), then the process
pt (L) is identically equal to 1 and the insider’s optimization problem only depends
on the value of the threshold but not on its conditional distribution. Otherwise, if L
depends on F, the process pt(L) reflects the anticipation of the insider on the eco-
nomic situation and naturally appears in the resolution of the insider’s optimization
problem. For examples of L and explicit computations of corresponding pt (L), inter-
ested reader may refer to [10].

Proposition 3.3 Under Hypothesis 3.2, we have

E[U(XT )|GM0 ] = E

[
pT (l)

(
11T<τl U(X0T (l)) + 11T≥τl U(X1T (τl))

)]

l=L

where for l > 0, τl := inf{t : Λt ≥ l}.

Proof Wewill use the change of probability to PL in order to reduce to the case where
L and FT are independent. Firstly,

E[U(XT )|GM0 ] = E

[
11T<τU(X0T (L)) + 11T≥τU(X1T (τ )) |L

]

= EPL

[
pT (l)

(
11T<τl U(X0T (l)) + 11T≥τlU(X1T (τl))

) ]

l=L

= E

[
pT (l)

(
11T<τl U(X0T (l)) + 11T≥τlU(X1T (τl))

) ]

l=L
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where the last two equalities follow respectively from the facts that FT and σ (L) are
independent under PL and that PL is identical to P on FT . ./

This motivates to introduce, for any l > 0, the set Al of pairs π = (π0,π1(·)),
where π0 and π1(·) are respectively F-predictable and P(F) ⊗ B(R+)-measurable
processes, such that

∫ τl∧T

0
|π0t σ

0
t |2dt +

∫ T

τl∧T
|π1t (τl)σ

1
t (τl)|

2dt < ∞, a.s.

0 ≤ π0 ≤ δb and π0τlγτl < 1,
and consider the following optimization problem

V0(l) = sup
π∈Al

E

[
pT (l)

(
11T<τl U(X0T ) + 11T≥τlU(X1T (τl))

)]
, (3.6)

where τl = inf{t ≥ 0 : Λt ≥ l} is a F-stopping time.
The following theorem shows that the optimal value of the optimization problem

(3.5) is actually equal to V0(L).

Theorem 3.4 With the above notation, we have

V0(L) = ess sup
π∈AL

E[U(XT ) |GM0 ] a.s.

Proof Assume that (π0(·),π1(·)) is an element in AL , then (π0(l),π1(·)) ∈ Al . By
Proposition 3.3 we obtain that

ess sup
π∈AL

E[U(XT ) |GM0 ] ≤ V0(L).

For the converse inequality, we shall use a measurable selection theorem. For any
ε > 0 and any l ∈ ]0,∞[, let Fε(l) be the set of strategies (π0,π1(·)) ∈ Al which
are ε-optimal with respect to the problem (3.6), namely such that

E

[
pT (l)

(
11T<τl U(X0T (l)) + 11T≥τlU(X1T (τl))

)]
≥

{
V0(l) − ε, if V0(l) < +∞,

1/ε, if V0(l) = +∞.

By ameasurable selection theorem (cf. Benes [3, Lemma1]), there exists ameasurable
(with respect to l) family {(π0(l),π1(·, l))}l∈R+ with value in Fε(l) for any l > 0.
Finally let

π̃0(·) := π0(·), π̃1t (x) := 11t>xπ1t (x,Λx).

We have (π̃0(·), π̃1(·)) ∈ AL (leading to the wealth X̃) and π̃1t (τl) = π1t (τl, l) for
any l > 0 on {τl < t}. Therefore, by Proposition 3.3,

E[U(X̃T ) |GM0 ] = E

[
pT (l)

(
11T<τl U(X0T (l)) + 11T≥τlU(X1T (τl))

)]

l=L

≥

{
V0(L) − ε, if V0(L) < +∞,

1/ε, if V0(L) = +∞.

Since ε is arbitrary, we obtain E[U(X̃T ) |GM0 ] ≥ V0(L). ./
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3.3 The impact of the short-selling and buying constraints

In practice, there are discussions on the necessity of imposing the short-selling con-
straint from the regulation point of view. In this subsection, we show that without
any constraint on short-selling strategies before the default, the insider may achieve a
terminal wealth that is not bounded in L1.

Proposition 3.5 We suppose that the following conditions are satisfied:

(1) the process Λ is a.s. strictly increasing on [0, T ],
(2) for any l in the support of the distribution of the law of L, P(ΛT ≥ l) > 0.

Then if there is no short-selling constraint and γ > 0 (or respectively if there is no
buying constraint and γ < 0), we have

ess sup
π∈AL

E[XT |GM0 ] = +∞ a.s.

In addition, for any utility function U such that lim
x→+∞

U(x) = +∞,

ess sup
π∈AL

E[U(XT ) |GM0 ] = +∞ a.s.

Proof We first do the proof for the case of no short-selling constraint and γ > 0.
Let ϕ : ]0,+∞[→ ]0,+∞[ be an increasing function such that ϕ(l) < l for any
l ∈ ]0,+∞[. Let ψ > 0 be a constant. For each l ∈ ]0,+∞[, we define a strategy
π(l) = (π0(l),π1(·)) ∈ Al as follows

π0t (l) = −ψ11τϕ(l)<t , π1(·) ≡ 0.

Note that (π0(·),π1(·)) is an admissible strategy if the short selling constraint is
removed. The value at the time τl of the corresponding wealth process Xϕ,ψ is equal
to (1+γτlψ)Xϕ,ψ

τl− . By the dynamics of thewealth process (3.2) and (3.3), on {τl ≤ T },
we have

Xϕ,ψ
τl = X0(1+ γτlψ) exp

(

−

∫ τl

τϕ(l)

(
µ0t ψ +

1
2
(σ 0t )2ψ2)dt −

∫ τl

τϕ(l)

σ 0t ψdWt

)

.

Moreover,

E[Xϕ,ψ
T |GM0 ] = E

[
pT (l)

(
11T<τl X

0,ϕ,ψ
T (l) + 11T≥τl X

1,ϕ,ψ
T (τl)

)]

l=L

≥ E
[
11T≥τl pT (l)Xϕ,ψ

τl

]
l=L

Nowfix an increasing sequence (ϕn)n≥1 of functions such thatϕn(l) < l for l ∈]0,+∞[
and limn→+∞ ϕn(l) = l. Thus by condition (1), τϕn (l) converges a.s. to τl when
n → +∞. The sequence of random variables (

∫ τl∧T
τϕn (l)∧T σ 0t ψ dWt )n≥1 converges a.s.

to 0. Then by Fatou’s lemma, we have

lim inf
n→+∞

E[11T≥τl pT (l)Xϕn ,ψ
τl ] ! E[11T≥τl pT (l)X0(1+ γτlψ)],
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which implies the first assertion since P(τl ≤ T ) > 0 by condition (2) and ψ is
arbitrary. We use a similar argument and the assumption on U to obtain

lim
ψ→+∞

E[11T≥τl pT (l)U(X0(1+ γτlψ))]l=L = +∞.

The case of no buying constraint and γ < 0 is similar by considering the symmetric
strategy π0t (l) = ψ11τϕ(l)<t . ./

Remark 3.6 The strategiesmentioned in this proof are not arbitrage strategies because
for any fixed function ϕ as in the proof, P(T ∈ [[τϕ(L), τ [[) > 0 and on this event, the
strategy of the insider that consists of betting on the default before maturity T turns
out to be a wrong bet. Thus, on a non null probability set, the strategy of a standard
investor outperforms the one of the insider.

4 Solving the optimization problem

In this section, we concentrate on solving the optimization problem (3.6)

sup
π∈Al

E

[
pT (l)

(
11T<τl U(X0T (l)) + 11T≥τlU(X1T (τl))

)]

for any fixed l > 0.We recall that the before-default and after-defaultwealth processes
X0 and X1 are governed by two control processes π0 and π1 respectively, so we need
to search for a couple of optimal controls π̂ = (π̂0, π̂1). In the following Theorem
4.1 we explain how to decompose the optimization problem into two problems each
depending only on π0 and on π1 respectively.

The after-default optimization problem, whose control parameter is π1 only, will
be solved firstly using the filtration F1 :

F
1 := (Fτl∨t )t∈[0,T ].

Remark that the initial σ -field of the filtration F1 is not trivial,

F1
0 = Fτl =

{
A ∈ A : A ∩ {τl ≤ t} ∈ Ft , t ∈ [0, T ]

}

and τl is Fτl -measurable. All the F1-adapted processes are indexed on the right-upper
side by the symbol “1”. In particular, we denote by X1,xl (τl) the solution of the SDE
(3.3) defined on the stochastic interval [[τl , T ]] starting from the F-stopping time τl
with Fτl -measurable initial value xl . We define by A1l the admissible predictable
strategy set (π1t (τl), t ∈ ]]τl, T ]]) such that

∫ τl∨T
τl

|π1t (τl)σ
1
t (τl)|2dt < ∞ a.s..

The global before-default optimization problem, whose control parameter is π0

only, involves the solution of the after-default optimization problem andwill be solved
in a second step, using the stopped filtration F0

F
0 := (Fτl∧t )t∈[0,T ].

All the F0-adapted processes are indexed on the right-upper side by the symbol “0”.
The admissible predictable strategy set A0l is (π0t (l), t ∈ [[0, τl ∧ T ]]) such that∫ τl∧T
0 |π0t (l)σ 0t |2dt < ∞, 0 ≤ π0t (l) ≤ δb and 1 > π0τl (l)γτl , a.s..
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Theorem 4.1 Let

V 1τl (xl) := ess sup
π1(τl )∈A1

l

E[pT (l)U(X1,xlT (τl))|Fτl ]. (4.1)

Then V0(l) defined in (3.6) can be written as the solution of the global optimization
problem as

V0(l) = sup
π0∈A0

l

E

[
11T<τl pT (l)U(X0T (l)) + 11T≥τl V

1
τl

(
X0τl (l)(1− π0τl (l)γτl )

)]
. (4.2)

Proof Consider firstly an arbitrary admissible strategy (π0,π1(·)) ∈ Al for a fixed
l > 0. By definition, (π0t , t ∈ [[0, τl ∧ T ]]) ∈ A0l and (π1t (τl), t ∈ ]]τl , T ]]) ∈ A1l .
Taking the conditional expectation with respect to Fτl leads to the following inequal-
ities

E

[
pT (l)

(
11T<τl U(X0T (l)) + 11T≥τl U(X1T (τl))

)]

= E

[
11T<τl pT (l)U(X0T (l)) + 11T≥τlE

(
pT (l)U(X1T (τl))|Fτl

)]

≤ E

[
11T<τl pT (l)U(X0T (l)) + 11T≥τl V

1
τl (X

0
τl (l)(1− π0τl (l)γτl ))

]

≤ V0(l).

For the converse inequality, let us assume for the moment that the esssup in the
definition (4.1) is achieved for a given π̂1(τl) (see section 4.1 for the proof). Then
for any (π0t , t ∈ [[0, τl ]]) in A0l , by a measurable selection theorem, there exists a
P(F) ⊗ B(R+)-measurable process π1(·) such that π1(τl) = π̂1(τl) on ]]τl, T ]] and
(π0,π1(·)) ∈ Al , where we have extended π0 to an F-predictable process on R+.
Thus

V0(l) ≥ E

[
11T<τl pT (l)U(X0T (l)) + 11T≥τl V

1
τl (X

0
τl (l)(1− π0τl (l)γτl ))

]

By taking the supremum over all (π0t (l), t ∈ [[0, τl ]]) ∈ A0l , we obtain the desired
inequality. ./

Remark 4.2 The supremum in V0(l) can be approached by a sequence of admissible
strategies in A0l (see Proposition 4.11), which induces a sequence of strategies inAL
such that the corresponding value functions converge to ess sup

π∈AL

E[U(XT )|GM0 ].

Remark 4.3 The process (pt (l), t ∈ [0, T ]) is essential in our approach of initial
information. From a technical point of view, it plays a similar role to the default
density process in [15] (αt (θ), t ∈ [0, T ]) defined as αt (θ)dθ = P(τ ∈ dθ |Ft ). From
the modeling point of view, it is useful to compare the two processes.
– In the particular casewhere theFt -conditional law of L admits a density gt (l)with
respect to the Lebesgue measure, the default density can be completely deduced
(see [6, Proposition 3]) in this framework as αt (θ) = λθ gt(Λθ ) for t ≥ θ and
αt (θ) = E[αθ (θ)|Ft ] for t < θ where λ is the process given in Sect. 2.

– In the general case, the law of L can have atoms, then the default density does not
exist and the approach in [15] is no longer valid, whereas the insider’s optimization
problem can be solved with the process p.(l).
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4.1 The after-default optimization

In this section,we focus on the optimizationproblem(4.1) in thefiltrationF1 = (Fτl∨t )t∈[0,T ]

V 1τl (xl) = ess sup
π1(τl )∈A

1
l

E[pT (l)U(X1,xlT (τl))|Fτl ]

where τl is an F-stopping time and the initial after-defaultwealth xl isFτl -measurable.
In the following, we call this problem the after-default optimization problem because
it involves the strategy process π1 and the wealth processes X1 only after default.
However, we note that it is an intermediary optimization problem of the global one
which is formulated at the initial date. Therefore, it is not surprising that it depends
on the conditional density process p.(l) of the default threshold.

This problem is similar to a standard optimization problem, we will extend the
results in our frameworkwhere the initial time τl is a random time (and is anF-stopping
time). We define the process

Zt (τl) = exp
(

−

∫ τl∨t

τl

µ1u(τl)

σ 1u (τl)
dWu −

1
2

∫ τl∨t

τl

∣∣∣∣
µ1u(τl)

σ 1u (τl)

∣∣∣∣
2
du

)
, t ∈ [0, T ].

This process is an F1-local martingale (cf. [18, page 20]), we assume that the coeffi-
cients µ1(τl) and σ 1(τl) satisfy a Novikov criterion (see Theorem 4.4 below) so that
(Zt (τl))t∈[0,T ] is an F1-martingale.

Theorem 4.4 We assume that for any l > 0, the coefficientsµ1u(τl) and σ 1u (τl) satisfy
the Novikov criterion

E

[
exp

(
1
2

∫ τl∨T

τl

∣∣∣∣
µ1u(τl)

σ 1u (τl)

∣∣∣∣
2
du

)]
< ∞.

Then the value function process to problem (4.1) is a.s. finite and is given by

V̂ 1τl (xl) = E

[
pT (l)U

(
I
(
ŷτl (xl)

ZT (τl)

pT (l)
)) ∣∣∣∣F

1
0

]

where I = (U ′)−1 and the Lagrange multiplier ŷτl (·) is the unique Fτl ⊗ B(R+)-
measurable solution of the equation

1
Zt (τl)

E

[
ZT (τl)I

(
ŷτl (xl)

ZT (τl)

pT (l)
) ∣∣∣∣F

1
0

]
= xl .

The corresponding optimal wealth is equal to

X̂1,xlt (τl) =
1

Zt (τl)
E

[
ZT (τl)I

(
ŷτl (xl)

ZT (τl)

pT (l)
) ∣∣∣∣F

1
t

]
, t ∈ [[τl, T ]]. (4.3)
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Proof Note that after the default, the market is complete, characterized by the state
price density process Z(τl). The process Z(τl)X1,xl (τl) is a positive localF1-martingale,
and thus a supermartingale, leading to the following budget constraint

E

(
ZT (τl)X1,xlT (τl)

∣∣∣F1
0

)
≤ xl .

Conversely, the martingale representation theorem on the Brownian filtration implies
that for anyFT ⊗B(R+)-measurable XT (·), there exists aP(F)⊗B(R+)- measurable
process φ(·) such that

XT (τl)11τl<T = E(XT (τl)11τl<T |Fτl ) +

∫ τl∨T

τl

φu(τl)du

Therefore the after default optimization problem is solved by means of the Lagrange
multiplier

V 1τl (xl) = E

[
pT (l)U

(
I
(
ŷτl (xl)

ZT (τl)

pT (l)
))

|F1
0

]

and the optimal wealth is given by

X̂1,xlt (τl) =
1

Zt (τl)
E

[
ZT (τl)I

(
ŷτl (xl)

ZT (τl)

pT (l)
)
|F1

t

]

where I = (U ′)−1 and the Lagrangemultiplier ŷτl(xl) isFτl ⊗B(R+)-measurable and
satisfies X̂1,xlτl (τl) = xl . The existence, uniqueness and measurability of the Lagrange
multiplier ŷτl (xl) in the case of a non trivial initial σ -field is proved in Proposition 4.5
of Hillairet [8]. ./

Remark 4.5 Concerning the optimal wealth X̂1,xl (τl) in (4.3), we can prove2 that
starting from a same wealth xl at the default time τl , the optimal wealth process of the
after-default optimization problem is the same for the initial (insider) and the progres-
sive (standard investor) information. This result is natural, since after the default, the
two information flows coincide. But the input wealth of the after-default optimization
problem will not be the same for the two information flows since they are different
before τl .

We will quantify numerically the gain of an insider compared to a standard investor
for the global optimization problem. We now consider, as in [15], Constant Relative
Risk Aversion (CRRA) utility functions

U(x) =
x p

p
, 0 < p < 1, x > 0

and I (x) = x
1
p−1 . Direct computations from the previous theorem yield the optimal

wealth
2 The proof is based on the relationship between the two key processes p(l) and α(τl). More precisely,

the coefficient pT (l)
αT (τl )

coincides with the ratio between the Lagrange multipliers for respectively the insider
and the standard investor.
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X̂1,xlt (τl) =
xl

Zt (τl)

E

[
pT (l)

(
ZT (τl )
pT (l)

) p
p−1

∣∣∣F1
t

]

E

[
pT (l)

(
ZT (τl )
pT (l)

) p
p−1

∣∣∣Fτl

] , t ∈ [[τl , T ]]

and the optimal value function

V̂ 1τl (xl) =
x pl
p

(

E

[

pT (l)
(
ZT (τl)

pT (l)

) p
p−1

∣∣∣∣Fτl

])1−p

=:
x pl
p
Kτl (4.4)

where Kτl = (E[pT (l)( ZT (τl )
pT (l) )

p
p−1 |Fτl ])

1−p is Fτl -measurable and only depends on
the stopping time τl and on market parameters.

4.2 The global before-default optimization

We now consider the optimization problem (4.2) with CRRA utility functions. Using
(4.4), we have to solve :

V0(l) = sup
π0∈A0

l

E

[
11T<τl pT (l)U(X0T (l)) + 11T≥τl Kτl U

(
X0τl (l)(1− π0τl (l)γτl )

)]

where theFτl -measurable randomvariable Kτl does not depend on the control process
π0 ∈ A0l .Wewill use a dynamic programmingapproach.Recall thatF

0 = (Fτl∧t )t∈[0,T ]

is the stopped filtration at the default time. Since 11t<τl is Fτl∧t -measurable, we have

E
[
11T<τl pT (l)U(X0T (l)) + 11T≥τl Kτl U

(
X0τl (l)(1− π0τl (l)γτl )

)
|Fτl∧t

]

= 11t≥τl Kτl U
(
X0τl (l)(1 − π0τl (l)γτl )

)

+E
[
11T<τl pT (l)U(X0T (l)) + 11t<τl≤T Kτl U

(
X0τl (l)(1− π0τl (l)γτl )

)
|Fτl∧t

]

For any ν ∈ A0l , we introduce the family of F
0-adapted processes

Xt (ν) := ess sup
π0∈A0

l (t,ν)

E

[
11T<τl pT (l)U(X0T (l))+11t<τl≤T Kτl U

(
X0τl (l)(1−π0τl (l)γτl )

)
|Fτl∧t

]

whereA0l (t, ν) is the set of controls coinciding with ν until time t: for any t ∈ [0, T ],
ν ∈A0l ,A

0
l (t, ν) = {π0 ∈ A0l : π0.∧t = ν.∧t }. We have V0(l) = X0(ν) for any ν ∈ A0l .

In the following result, we show that the strategy constraints play a crucial role
in the optimization: the optimal strategy at the default time is the short-selling (resp.
buying) constraint bound if γ is positive (resp. negative).

Proposition 4.6 Foranyπ0 ∈ A0l , there exists a sequence of strategies (π
0
n ∈ A0l )n∈N∗

such that π0n,τl = δb11{γ<0} and

lim
n→+∞

X0(π
0
n ) ≥ X0(π

0).
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Proof Let (τn)n∈N∗ , with τn < τl , be an increasing sequence of F-stopping times
that converge to τl . Starting from a strategy π0 ∈ A

0,δ
l , we define another strategy

π0n = 11[[0,τn ]]π
0+11]]τn ,τl ]]δb11{γ<0} that remains inA0,δl . We denote as X0(l) and X0n(l)

the correspondingwealth before default, and asX0(π0) andX0(π0n ) the corresponding
value function for those strategies of the before-default global optimization problem.
On the one hand, by dominated convergence theorem, it is easy to check that

lim
n→+∞

E
[
11T<τl pT (l)|U(X0T (l)) −U(X0n,T (l))|

]
= 0.

On the other hand, on the event {T ≥ τl}

X0n,τl (l)(1− π0n,τl (l)γτl )

X0τl (l)(1− π0τl (l)γτl )
=

(1− δb11{γ<0}γτl )

(1− π0τl (l)γτl )

× exp
(∫ τl

τn

(−(π0s − δb11{γ<0})µ
0
s +

1
2
(σ 0s )2((π0s )

2 − 11{γ<0}δ
2
b))ds

−

∫ τl

τn

(π0s − δb11{γ<0})σ
0
s dWs

)

π0 ∈ A0l implies that 0 ≤ π0τl (l) ≤ δb and
(1−δb11{γ<0}γτl )

(1−π0τl (l)γτl )
≥ 1.

τn → τl implies that the exponential term tends to 1 a.s.. Thus

lim
n→+∞

X0n,τl (l)(1− π0n,τl (l)γτl )

X0τl (l)(1− π0τl (l)γτl )
≥ 1 and

lim
n→+∞

E

[
11T≥τl Kτl U(X0n,τl (l)(1− π0n,τl (l)γτl ))

]

≥ E

[
11T≥τl Kτl U(X0τl (l)(1− π0τl (l)γτl ))

]
.

Consequently,
lim

n→+∞
X0(π

0
n ) ≥ X0(π

0).

./

We now characterize the optimal strategy process. Let Xν,0 denote the wealth
process derived from the control ν ∈ A0l . From the dynamic programming principle,
the following result holds:

Lemma 4.7 For any ν ∈ A0l , the process

ξν
t := Xt (ν) + 11t≥τl Kτl U(Xν,0

τl (l)(1− ντl (l)γτl )), 0 ≤ t ≤ T

is an F0-supermartingale. Furthermore, the optimal strategy π̂0 is characterized by
the martingale property : (ξ π̂0

t )0≤t≤T is an F0-martingale.
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Proof Let s, t be two times such that s ≤ t ≤ T .

E

[
Xt (ν) + 11t≥τl Kτl U(Xν,0

τl (l)(1− ντl (l)γτl ))|Fτl∧s

]

= E

[
Xt (ν) + 11s<τl≤t Kτl U(Xν,0

τl (l)(1− ντl (l)γτl ))|Fτl∧s

]

+ 11s≥τl Kτl U(Xν,0
τl (l)(1− ντl (l)γτl ))

We make explicit the conditional expectation :

E

[
Xt (ν) + 11s<τl≤t Kτl U(Xν,0

τl (l)(1− ντl (l)γτl ))|Fτl∧s

]

= E

[
ess sup

π0∈A0
l (t,ν)

E
[
11T<τl pT (l)U(X0T (l)) + 11t<τl≤T Kτl U(X0τl (l)(1 − π0τl (l)γτl ))|Fτl∧t

]

+ 11s<τl≤t Kτl U(Xν,0
τl (l)(1− ντl (l)γτl ))|Fτl∧s

]

≤ ess sup
π0∈A0

l (s,ν)

E
[
11T<τl pT (l)U(X0T (l)) + 11s<τl≤T Kτl U(X0τl (l)(1− π0τl (l)γτl ))|Fτl∧s

]

(4.5)

the last inequality following from the fact that in the last esssup, the optimal control
is taken from the date s ≤ t . Thus

E

[
Xt (ν) + 11t≥τl Kτl U(Xν,0

τl (l)(1− ντl (l)γτl ))|Fτl∧s

]

≤ Xs(ν) + 11s≥τl Kτl U(Xν,0
τl (l)(1− ντl (l)γτl ))

and (ξν
t )0≤t≤T is an F0-supermartingale. It is an F0-martingale if and only if the

inequality (4.5) is an equality for all t ∈ [0, T ], meaning that ν is the optimal control
on [0, t], for all t ≤ T . This characterizes the optimal strategy. ./

Remark that the F0-adapted process defined for 0 ≤ t ≤ T as

Yt :=
Xt (ν)

U(Xν,0
t (l))

(4.6)

= ess sup
π0∈A0

l (t,ν)

E

[
11T<τl pT (l)

( X0T (l)
Xν,0
t (l)

)p
+ 11t<τl≤T Kτl

( X0τl (l)

Xν,0
t (l)

)p
(1− π0τl (l)γτl )|Fτl∧t

]

does not depend on ν ∈ A0l , and is constant after τl . We will give a characterization
of the process Y in terms of a backward stochastic differential equation (BSDE) and
of the optimal strategy. Before this, we give a characterization of F0-martingale.

Lemma 4.8 Let (Mt )t∈[0,T ] be an F0-martingale. Then there exists an F-predictable
process φ in L2loc(W ) such that Mt = M0 +

∫ t
0 φs11s≤τl dWs , t ∈ [0, T ].
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Proof We first prove that (Mt )t∈[0,T ] is also an F-martingale. Indeed, for s ≤ t ≤ T

Ms = E(Mt |Fτl∧s) = E(E(Mt |Fτl )|Fs) = E(Mt |Fs)

because Mt is Fτl -measurable. Thus, by representation theorem for the F-martingale,
and since (Mt )t∈[0,T ] is stopped at time τl , there exists φ an F-predictable process
such that Mt = M0 +

∫ t
0 φs11s≤τl dWs . ./

We are now ready to characterize the optimal strategy. Remark that Yt = Xt (ν)

U (Xν,0
t (l))

is

positive on [[0, τl [[ (and zero after τl ) thus Y ∈ L+
l (F0) where L+

l (F0) is the set of
F0-adapted processes Ỹ such that Ỹt > 0 for t ∈ [[0, τl[[ and Ỹt = 0 for t ∈ [[τl,+∞[[.

Theorem 4.9 The process Y defined in (4.6) is the smallest solution in L+
l (F0) to the

BSDE: for any t ∈ [[0, T ∧ τl ]],

Yt = 11T<τl pT (l)+11t<τl≤T Kτl
(1− δb11{γ<0}γτl )

p

p
+

∫ T∧τl

t
f (θ,Yθ ,φθ )dθ−

∫ T∧τl

t
φθdWθ ,

(4.7)
for some φ ∈ L2loc(W ), and where

f (s,Ys ,φs) = p ess sup
ν∈A0

l ,s.t . ντl=δb11{γ<0}

[(
µ0s Ys + σ 0s φs)νs −

1− p
2

Ys |νsσ 0s |2
]
.

Remark 4.10 As in Theorem 4.2 in [15], the optimal strategy before default is charac-
terized through the optimization of the driver of aBSDE.However, themain difference
relies in the fact that in our case, the driver has a jump at the default time τl . Nev-
ertheless, since the jump occurs (if it occurs) only at the terminal date of the BSDE,
standard theory on BSDE still applies.

Proof By Lemma 4.7, for any ν ∈ A0l

ξν
t = U(Xν,0

t (l))Yt + 11t≥τl Kτl U(Xν,0
τl (l)(1− ντl (l)γτl ) 0 ≤ t ≤ T

is an F0-supermartingale. In particular, by taking ν = 0, we see that the processes
(Yt + Kτl11t≥τl )0≤t≤T , and thus (Yt )0≤t≤T are F0-supermartingales. By the Doob-
Meyer decomposition and Lemma 4.8, there exists φ ∈ L2loc(W ), and a finite variation
increasing F0-predictable process A such that:

dYt = φt dWt − d At , t ∈ [[0, T ∧ τl ]].

From Itô’s formula, we deduce that the finite variation process in the decomposition
of the F0-supermartingale ξν , ν ∈ A0l , is given by −Aν with

d Aν
t = (Xν,0

t (l))p
{ 1
p
d At − (µ0t Yt + σ 0t φt11t≤τl )νt dt

+
1− p
2

Yt |νtσ 0t |2dt − Kt
(1− νtγt )p

p
d11t≥τl

}
.
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Aν is nondecreasing and the martingale property of ξ π̂0 implies that

d At = p
[
(µ0t Yt + σ 0t φt11t≤τl ))π̂

0
t dt −

1− p
2

Yt |π̂0t σ
0
t |2dt + Kt

(1− π̂0t γt )
p

p
d11t≥τl

]

and

At = A0 + p ess sup
ν∈A0

l

[ ∫ t

0

(
(µ0s Ys + σ 0s φs)νs −

1− p
2

Ys |νsσ 0s |2
)
ds

+11t≥τl Kτl
(1− ντlγτl )

p

p

]
.

Maximizing at τl leads to ντl = δb11{γ<0} (see Proposition 4.6) and

At = A0 + p ess sup
ν∈A0

l s.t . ντl=δb11{γ<0}

[ ∫ t

0

(
µ0s Ys + σ 0s φs)νs −

1− p
2

Ys |νsσ 0s |2
)
ds

]

+11t≥τl Kτl
(1− δb11{γ<0}γτl )

p

p
.

Furthermore, YT = 11T<τl pT (l) and (Yt )0≤t≤T is constant after τl , thus (Y,φ) solves
the BSDE (4.7). Note that Y is not a continuous process, it may jump at time τl .

We now prove that Y is smallest solution in the L+
l (F0) to the BSDE (4.7). Let

Ỹ ∈ L+
l (F0) be another solution, and we define the family of nonnegativeF0-adapted

processes ξν(Ỹ ), ν ∈ A0l , as

ξν
t (Ỹ ) = U(Xν,0

t (l))Ỹt + 11t≥τl Kτl U(Xν,0
τl (l)(1− ντl (l)γτl )), t ∈ [0, T ].

By similar calculations as above, dξν
t (Ỹ ) = d M̃ν

t − d Ãν
t , where Ãν is a nonde-

creasing F0-adapted process, and M̃ν is an F0-local martingale. By Fatou’s lemma,
this implies that the process ξν(Ỹ ) is an F0-supermartingale, for any ν ∈ A0l . Since
ỸT = 11T<τl pT (l), we deduce that for all ν ∈ A0l , for all t ∈ [0, T ]

E

[
U(Xν,0

T )11T<τl pT (l) + 11t≥τl Kτl U(Xν,0
τl (l)(1 − ντl (l)γτl )

∣∣∣F0
t

]
≤ U(Xν,0

t )Ỹt .

Since p > 0, U(Xν,0
t ) is positive. By dividing the above inequalities by U(Xν,0

t ),
we deduce by definition of Y (see (4.6)), and arbitrariness of ν ∈ A0l , that Yt ≤ Ỹt ,
0 ≤ t ≤ T . This shows that Y is the smallest solution to the BSDE (4.7). ./

For optimizing (4.6) via the BSDE (4.7), a naive approach would consist in opti-
mizing π0 at time τl , leading to an π0τl = δb11{γ<0}, and then optimizing for s < τl the
driver

f 0(s,Y 0s ,φ0s ) = ess sup
0≤νs≤δb

p[
(
µ0s Y

0
s + σ 0s φ0s )νs −

1− p
2

Y 0s |νsσ
0
s |2],
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where Y 0 is solution to the BSDE: for t ∈ [[0, T ∧ τl ]]

Y 0t = 11T<τl pT (l) + 11t<τl≤T Kτl
(1− δb11{γ<0}γτl )

p

p

+

∫ T∧τl

t
f 0(θ,Y 0θ ,φ0θ )dθ −

∫ T∧τl

t
φ0θ dWθ ,

leading to the optimal portfolio π̂0s . Thus, the natural candidate to be the optimal
strategy before default is

πnp := 11[[0,τl [[π̂
0 + δb11{γ<0}11{[[τl ]]}, (4.8)

but unfortunately πnp is not a predictable process. Nevertheless, we will prove the
existence of a sequence of predictable strategies in A0l such that the corresponding
value function tends to the value function relative to this non predictable strategy. To
do this, for any strategy π0 ∈ A0l , we recall the corresponding value function of the
before default global optimization problem

X0(π
0) = E

[
11T<τl pT (l)U(Xπ0

T (l)) + 11T≥τl Kτl U(Xπ0
τl (l)(1− π0τl (l)γτl ))

]
. (4.9)

Note that (4.9) can also be defined for a strategy π that is predictable only on [[0, τl [[
(and not necessarly on [[0, τl ]]). Using Proposition 4.6, we have the following result:

Proposition 4.11 Let (τn)n∈N∗ be an increasing sequence of F-predictable stopping
times that converge to τl.We consider the strategies (π0n = 11[[0,τn ]]π̂

0+11]]τn,τl ]]δb11{γ<0})
where π̂0 is the optimal process for the driver of the followingBSDE: for t ∈ [[0, T∧τl [[

Y 0t = 11T<τl pT (l) + 11t<τl≤T Kτl
(1− δb11{γ<0}γτl )

p

p

+

∫ T∧τl

t
f 0(θ,Y 0θ ,φ0θ )dθ −

∫ T∧τl

t
φ0θdWθ ,

f 0(s, y,φ) = p sup
0≤ν≤δb

[(
µ0s y + σ 0s φ)ν −

1− p
2

y|νσ 0s |2
]
.

Those strategies are in A0l and satisfy

lim
n→+∞

X0(π
0
n ) = V0(l) = E

[
11T<τl pT (l)U(X π̂0

T (l))+11T≥τl Kτl U(X π̂0
τl (l)(1−δb11{γ<0}γτl ))

]
.

Proof For any n ∈ N∗, the strategy π0n := 11[[0,τn ]]π̂
0 + 11]]τn,τl ]]δb11{γ<0} is in A0l ,

and π0n converges to the non-predictable optimal strategy πnp defined in (4.8) when
n → ∞. Moreover, for any n ∈ N∗, X0(π0n ) ≤ X0(πnp) and by Proposition 4.6

X0(π
np) ≥ lim

n→+∞
X0(π

0
n ) ≥ X0(π̂

0).
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But the proof of Proposition 4.6 still holds if we change the value at time τl of the
portfolio π0, thus the converse inequality X0(πnp) ≤ limn→+∞ X0(π0n ) holds and

E

[
11T<τl pT (l)U(X π̂0

T (l)) + 11T≥τl Kτl U(X π̂0
τl (l)(1− δb11{γ<0}γτl ))

]

= X0(π
np) = X0(11[[0,τl [[π̂

0 + δb11{γ<0}11τl )

= lim
n→+∞

X0(11[[0,τn ]]π̂
0 + 11]]τn ,τl ]]δb11{γ<0})

= lim
n→+∞

X0(π
0
n )

./

5 Numerical illustrations

We now illustrate our previous results by explicit models and we aim to compare the
optimization results for an insider, a standard investor and aMerton investor.We recall
that all investors start with an initial wealth X0. For the purpose of comparison, we
choose a similar model as the one studied in [15].More precisely, we let the parameters
µ0, σ 0, γ be constant, and µ1(θ), σ 1(θ) are deterministic functions of θ given by

µ1(θ) = µ0
θ

T
, σ 1(θ) = σ 0(2 −

θ

T
), θ ∈ [0, T ],

which means that the ratio of the after-default and before-default for the return rate of
the asset is smaller than 1 and for the volatility is larger than 1. Moreover, these ratios
increase or decrease linearlywith the default time respectively: the after-default rate of
return drops to zero, when the default time occurs near the initial date, and converges
to the before-default rate of return, when the default time occurs near the finite invest-
ment horizon. For the volatility, this ratio converges to the double (resp. initial) value
of the before-default volatility, when the default time goes to the initial (resp. terminal
horizon) time. Moreover, in order to satisfy the hypothesis in the simulation part of
[15], we have to assume that the default barrier L has no atoms (to ensure the density
hypothesis, see Remark 4.3) and that L is independent of the filtration F (so that the
default density is a deterministic function). In this case, pT (L) = 1. For the default
event, we consider a simple case where the process (λt , t ≥ 0) is a constant λ > 0
and the default threshold L follows the uni-exponential law. Hence, P(τ > t) = e−λt

and the default density is a deterministic function α(θ) = λe−λθ for all θ ≥ 0.

Consider the CRRA utility U(x) = x p
p , 0 < p < 1, the after-default value function

is given from (4.4) by
V 1τl (x) = Kτl U(x)

where

Kτl =
(
E[ZT (τl)

p
p−1 ]

)1−p
= exp

(
1
2

p
1− p

(µ1(τl)

σ 1(τl)

)2
(τl ∨ T − τl)

)
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Furthermore, the solution of the before-default optimization problem is given by

V0(l) = Y0U(X0)

where Y is the solution of the BSDE (4.7) when letting φ = 0, i.e.,

Yt = 11T<τl + 11T≥τl>t Kτl
(1− δbγ 11{γ<0})p

p
+

∫ τl∧T

t
f (θ,Yθ )dθ (5.1)

where
f (t, y) = p ess sup

ν∈A0
l ,ντl=δb11{γ<0}

{µ0νt −
1− p
2

(νtσ
0)2}y.

We notice that in the case where the default time τl occurs after the maturity T ,
the optimal strategy coincides with the classical Merton strategy with constraint
π ∈ [0, 1γ 11{γ>0} + δb11{γ<0}[ (Merton strategy does not take into account the eventu-
allity of the default). In the case where τl occurs before T , the process Y is stopped
at τl , with the terminal value depending on the quantity Kτl , and the strategy at τl is
equal to the trading constraint. We use an iterative Howard algorithm [11] to solve
the equation (5.1). The following results are based on the model parameters described
below: µ0 = 0.03, σ 0 = 0.2, T = 1, the risk aversion parameter p = 0.7 and the
buying constraint δb = 1. In addition, we fix the default intensity λ = 0.3. This
corresponds to a relatively high default risk.

Figure 5.1 compares, for the insider, standard and Merton investors, the optimal
value function and the wealth process for one given trajectory in the case of positive
values for γ (that is a loss of the risky asset at the default time). The loss given default
is γ = 0.3. At the default time which occurs before the maturity, the value function
and the wealth process suffer a brutal loss for all the three strategies. For the value
function, the insider outperforms the other two investors before and after the default
occurs. Before the default, the value function for the standard investor is smaller than
the Merton one because the latter does not consider at all the potential default risk.
However, when the default occurs, the investor outperforms the Merton strategy since
the default risk is taken into account from the beginning. For the wealth process, we
observe that the insider’s wealth coincides with the one of the Merton investor during
a long time before the default occurs. However, due to her information on the default
event, she can adjust the strategy just before the default in order not to be impacted
by the loss of the risky asset. On the contrary, both the standard andMerton investors’
wealth suffer a loss at the default time, the loss of the standard investor being less than
for the Merton investor. Therefore the insider obtains the largest wealth after default.

Figure 5.2 and 5.3 consider the case of negative γ (that is a gain of the risk asset
at the default time) with the other parameters being unchanged. We observe a similar
phenomenon for the optimal value function with a loss at the default time for all
investors. However, for all the three types of investors, the wealth process has a gain
since the jump of the risky asset is positive. Besides, the profit of the insider is more
important as the jump size |γ | is larger.
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Fig. 5.1 Value function and wealth process for insider, investor and Merton: γ = 0.3.
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Fig. 5.2 Value function and wealth process for insider, investor and Merton: γ = −0.3.
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Finally, we discuss by numerical tests the possibility to relax the short-selling
constraint, that is, instead of prohibiting completely the short-selling strategy, we
suppose that the investors can effectuate short-selling tradings under a given constraint
δs . The results for different values of δs are illustrated in Figure 5.4: not surprisingly,
for the case of a loss at default, the optimal value function of both the insider and the
standard investor is an increasing function of δs . Moreover, the gain is more significant
for the insider.

6 Annex

We recall the canonical decomposition ofGM -adapted (respectivelyGM -predictable)
processes (see Jeulin [14] Lemma 3.13 and 4.4).
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Fig. 5.3 Value function and wealth process for insider, investor and Merton: γ = −0.7.
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Fig. 5.4 The impact of the short-selling constraint λ = 0.3 and γ = 0.3.
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Lemma 6.1 1. For t ≥ 0, any GMt -measurable random variable can be written in
the form Yt = 11τ>tY 0t (L) + 11τ≤tY 1t (τ ) where Y 0t (·) and Y 1t (·) are Ft ⊗ B(R+)-
measurable.

2. AnyGM-adapted processY admits the decomposition formYt = 11τ>tY 0t (L) + 11τ≤tY 1t (τ )
where Y 0(·) and Y 1(·) are F ⊗ B(R+)-adapted. 3

3. AnyGM-predictable processY admits the decomposition formYt = 11τ≥tY 0t (L) + 11τ<tY 1t (τ )
where Y 0(·) and Y 1(·) areP(F)⊗B(R+)-measurable,P(F) being the predictable
σ -algebra associated with the filtration F.

Remark 6.2 To compare with the case of a standard investor, we recall that any
Gt -measurable random variable Zt can be written as Zt = 11τ>t Z0t + 11τ≤t Z1t (τ )
where Z0t and Z1t (·) are respectively Ft -measurable and Ft ⊗ B(R+)-measurable.

3 Namely for any t ≥ 0, the function Y it (·) is Ft ⊗ B(R+)-measurable.
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