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We study the pricing of credit derivatives with asymmetric information. The managers
have complete information on the value process of the firm and on the default threshold,
while the investors on the market have only partial observations, especially about the
default threshold. Different information structures are distinguished using the framework
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sensitive contingent claims in these cases.
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1. Introduction

The modeling of a default event is an important subject from both economic and
financial point of view. There exists a large literature on this issue and mainly two
modeling approaches: the structural one and the reduced-form one. In the structural
approach, where the original idea goes back to the pioneer paper of Merton [23],
the default is triggered when a fundamental process X of the firm passes below a
threshold level L. The fundamental process may represent the asset value or the
total cash flow of the firm where the debt value of the firm can also be taken into
consideration. This provides a convincing economic interpretation for this approach.
The default threshold L is in general supposed to be constant or deterministic.
Its level is chosen by the managers of the firm according to some criterions —
maximizing the equity value for example as in Leland [22].

For an agent on the financial market, the vision on the default is quite different:
on one hand, she possesses merely a limited information of the basic data (the
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process X for example) of the firm; on the other hand, to deal with financial products
written on the firm, she needs to update her estimations of the default probability
in a dynamic manner. This leads to the reduced-form approach for default modeling
where the default arrives in a more “surprising” way and the model parameters can
be daily calibrated by using the market data such as the CDS spreads.

The default time constructed in the classical structural approach is a predictable
stopping time with respect to the filtration F generated by the continuous funda-
mental process. The intensity of such predictable stopping times does not exist. In
the credit risk literature, it is also interpreted by the fact that the default intensity
(or the credit spread) tends to zero when the time to maturity decreases to zero
(we shall make precise the meanings of these two intensities later on). The classical
structural approach has been extended to include jump processes such as in Carr
and Linetsky [4]. The links between the structural and the intensity approaches have
been investigated in the literature. If the default threshold L is a random variable
instead of constant or deterministic, then the default time admits the intensity. One
important example is the well known Cox process model introduced in Lando [21]
where L is supposed to be an exponentially distributed random variable indepen-
dent with F (see also [10]). Another class of models is the incomplete information
models (e.g. [5-7, 9, 19]) where the agent only has a partial observation of the
fundamental process X and thus her available information is represented by some
subfiltration of F. The intensity can then be deduced for the subfiltration.

In this paper, we are interested in the impact of information accessibility of
an agent on the pricing of credit derivatives. In particular, we aim to study the
information concerning the default threshold L in addition to the partial observa-
tion of the process X. This case has been studied in Giesecke and Goldberg [12]
where investors anticipate the distribution of L (following for example the Beta
distribution) whose parameters are calibrated through market data. Our approach
is different and is related to the insider’s information problems. Indeed, when the
managers make decisions on whether the firm will default or not, she has supple-
mentary information on the default threshold L compared to an ordinary investor
on the market. Facing the financial crisis, this study is also motivated by some
recent “technical default events”, where the bankruptcy occurs although the firm
is still capable to repay its debts.

We present our model in the standard setting. Let (€,.4,P) be a probability
space which represents the financial market. We consider a firm and model its
default time as the first time that a continuous time process (X¢)¢>o reaches some
default barrier L, i.e.,

T=inf{t: Xy <L} where Xy > L (1.1)

with the convention that inf () = +oco. Denote by F = (F;);>¢ the filtration gener-
ated by the process X, i.e., F; = 0(Xs,s < t) VN satisfying the usual conditions
where N denotes the P null sets. Such construction of a default time adapts to both
the structural approach and the reduced form approach of the default modeling,
according to the specification of the process X and the threshold L.



In the structural approach models, L is a constant or a deterministic function
L(t), then 7 defined in (1.1) is an F-stopping time as in the classical first pas-
sage models. In the reduced-form approach, the default barrier L is unknown and
is described as a random variable in A. We introduce the decreasing process X*
defined as

X =inf{X,, s <t}
Then (1.1) can be rewritten as
T=inf{t: X; < L}. (1.2)

This formulation gives a general reduced-form model of default (see [10]). In par-
ticular, when the barrier L is supposed to be independent of Foo := Vi>0F, then

P(r > t|Foo) =P(X; > L| Fs) = Fr(X}),

where Fy, denotes the distribution function of L. Note that the (H)-hypothesis is
satisfied in this case, that is, P(t > t|Fo) = P(7 > t|F:). We may also recover
the Cox-process model using a similar construction.

In most papers concerning the information-based credit models, the process X
is partially observed, making an impact on the conditional default probabilities and
on the credit spreads. In this paper, we let L to be a random variable and take into
consideration the information on L. Such information modeling is closely related
to the enlargement of filtrations theory. Generally speaking, the information of a
manager is represented by the initial enlargement of the filtration (F3):>0 and the
information of an investor is modeled by the progressive enlargement of (F;);>o or
of some of its subfiltration. We shall also consider the case of an insider who may
have some extra knowledge on L compared to an investor and whose knowledge is
however perturbed compared to the manager.

The rest of this paper is organized as follows. In Sec. 2, we introduce the pricing
problem and the different information structures for various agents on the market,
notably the information on the default barrier L. We shall distinguish the role of
the manager, the investor and the insider, who have different levels of information
on L. In successively Secs. 3, 4 and 5, we make precise the mathematical hypothesis
for these cases, using the languages of enlargement of filtrations. We also discuss
the risk-neutral probabilities in each case for further pricing purposes. In order to
distinguish the impact of the different filtrations from the impact of the different
pricing probabilities, we first give the price of a contingent claim under the historical
probability measure P for each information in Secs. 3, 4 and 5, the computations
under the corresponding pricing (or “risk-neutral”) probability measures being done
in the last section. Finally, we end the last section with numerical illustrations.

2. Pricing Framework and Information Structures

On the financial market, the available information for each agent varies. There exists
in general information asymmetry between different market investors, and moreover
between the managers of a firm and the investors. In particular, the managers



may have information on whether the firm will default or not, or when the default
may happen. The pricing of credit-sensitive derivative depends strongly on the
information flow of the agent. We begin by introducing the general pricing principle
and then we make precise different information.

2.1. General pricing principle

We fix in the sequel a probability space (€2,A,P) and a filtration F = (F;):>0
of A, representing the default-free information. Let 7 be a strictly positive and
finite random time on (2, 4, P), modeling the default time. The information flow
of the agent is described by a filtration H = (H;)¢>0. H could be different type of
filtrations for different agents, but for all filtration H, 7 is an H-stopping time, that
is, all agents observe at time ¢ whether the default has occurred or not. Without
loss of generality, we assume that all the filtrations we consider satisfy the usual
conditions of completeness and right-continuity.

We describe a general credit-sensitive derivative claim of maturity 7" as in
Bielecki and Rutkowski [2], by a triplet (C,G, Z) where C is an Fp-measurable
random variable representing the payment at the maturity 7" if no default occurs
before the maturity, G is an F-adapted, continuous process of finite variation with
Gop = 0 and represents the dividend payment, Z is an F-predictable process and
represents the recovery payment at the default time 7.

The triplet for a CDS, viewed by a protection buyer, satisfy C' = 0, Gy = —«t
and Z = 1 — a where & is the spread of CDS and « is the recovery rate of the
underlying name. The triplet for a defaultable zero-coupon satisfy C' =1, G = 0
and Z =1-qa.

The value process of the claim at time ¢ < 7 AT is given by

T
Vi = RiEq |CR; 1 75my +/ sy Ry Y Gy + Z: 1<y R
t

Ht] (2.1)

where Q denotes the pricing probability measure which we shall precise later, and
R is the discount factor process. We note that both the filtration and the pricing
probability depend on the information level of the agent.

In the credit risk analysis, one often tries to establish a relationship between
the market filtration and the default-free one. The main advantage is that the
default-free filtration is often supposed to have nice regularity conditions, while the
global market filtration which contains the default information is often difficult to
work with directly. Indeed, due to the default information, the processes adapted
to the global filtration have in general a jump at the default time (except in the
structural approach) and this makes it difficult to propose explicit models in this
filtration. In our model with insider’s information, we need to make precise the
filtration H = (H¢)r>0 in (2.1) for different types of agents. Our objective, similar
as mentioned above, is to establish a pricing formula with respect to the default-free
filtration in each case.



2.2. Information structures

We now describe the different information flows and the corresponding filtration H
for different agents on the market. Recall that the default time is modeled by

T=inf{t: X < L},

where L is a random variable and X* is the infimum process of an F-adapted process
X. We assume that L is chosen by the managers of the firm who hence have the
total knowledge on L. The information of X; is contained in the o-algebra F;.
However, the process X* can not give us full information on F;.

e Manager’s information.
The manager has complete information on X and on L. The filtration of the man-
ager’s information, denoted by GM = (GM);>, is then

GM .= F,vo(L).

Note that GM is in fact the initial enlargement of the filtration F with respect to L
and we call it the full information on L. It is obvious that 7 is a G -stopping time.
We make precise some technical hypothesis in the next section.

e Investor’s information.
In the credit risk literature, the accessible information on the market is often
modeled by the progressive enlargement G = (G)i>0 of F. More precisely, let

D = (D¢)i>0 be the minimal filtration which makes 7 a D-stopping time, i.e.
Dy = DY, with D = o(r At), then
gt == ft \/ Dt.

In our model (1.2), this is interpreted as G, = F; V o({L < X;}) and we call
this information the progressive (enlargement) information on L. Together with the
information flow of the filtration (F;);>0, an investor who observes the filtration
(Gt)t>0 knows at time ¢ whether or not the default has occurred up to ¢ and the

default time 7 once it occurs. We see that the manager’s information G is larger
than G;.

e Investor’s incomplete information.

In many incomplete information credit risk models, the process X driving the
default risk is not totally observable for the investors. In this paper, we will only
consider the example of a delayed information on X: the information of such an
investor is described by a progressive enlargement GP = (GP);>0 of a delayed
filtration of F, where

GgP = Fi—s) V D,

and 0(t) being a function valued in [0,¢] such that ¢ — §(¢) is increasing. The above
formulation covers the constant delay time model where §(¢) = § (see [7, 14]) and
the discrete observation model where §(t) = t—¢{"™ and t{™ <t < tgiff, 0=t <
tgm) < e < tﬁ,T) = T being the discrete dates on which the (F)¢>o information



may be renewed (for example, the release dates of the accounting reports of the
firm, see [9, 19]).

e Insider’s information.

Finally, we shall consider the insiders who have as supplementary information a
partial observation on L compared to the investor’s information G;. Namely, the
agent has the knowledge on a noisy default threshold: (L)¢>0, Ls = f(L,€s) with
€ being an independent noise perturbing the information on L. The corresponding
information flow is then modeled by G! = (G/)¢>¢ where

g{ =FVo(Ls, s <t)VDs.

Notice that G = G; V o(Ls, s < t). We call this information the “noisy full infor-
mation” on L. It is a successive enlargement of F, firstly by the noised information
of the default threshold and then by the default occurrence information.

From the point of view of the information relevant for pricing purpose, we have'
GP < G < G! < GM. They correspond to the pricing filtration H in (2.1) for
different agents on the market. We shall concentrate on the pricing problem with
the above filtrations and we begin by making precise the mathematical hypothe-
sis on these types of information on L, with which we introduce the risk-neutral
probabilities QQ in each case.

3. Full Information

In this section, we work with the manager information flow G = F V (L), which
is an initial enlargement of the filtration F. Recall that the default barrier is fixed
at date 0 by the manager as the realization of a random variable L. We assume in
addition that the filtration F is generated by a Brownian motion B.

3.1. Initial enlargement of filtration
In the theory of initial enlargement of filtration, it is standard to work under the
following density hypothesis due to Jacod [17, 18].
Assumption 3.1. We assume that L is an 4-measurable random variable with
values in R, which satisfies the assumption:

P(Le |F)(w)~P(Le:), Vt>0, P—as.

Remark. Jacod has shown that, if Assumption 3.1 is fulfilled, then any F-local
martingale is a G™-semimartingale.

We denote by PF(w,dx) a regular version of the conditional law of L given F;
and by PL the law of L (under the probability P). According to Jacod [18], there

1Remark that the following inclusions hold: GP C G C GM but G g GM since the noise
(es) Q GM. Nevertheless, all the relevant information of G’ is included in GM, that we denote by
Gl < GM.



exists a measurable version of the conditional density
B dPE
~ dPL

which is an (F,P)-martingale and hence can be written as

pi(7)(w) (w, ) (3.1)

pt($)=p0($)+/0 Bs(x)dBs, VYV eR

for some F-predictable process (3:(z)):>0. Moreover, the fact that PF is equivalent
to PL implies that P-almost surely p;(L) > 0. Let us introduce the F-predictable
process pM where pM(x) = Bi(x)/pi(x), the density process p;(L) satisfies the
following stochastic differential equation

dp(L) = pi(L)p}" (L)dB.

Note that (BM := B, — fot pM(L)ds,t > 0) is a (GM,P)-Brownian motion.

It is proved in Grorud and Pontier [13] that Assumption 3.1 is satisfied if and
only if there exists a probability measure equivalent to P and under which F, :=
Vi>0F; and o(L) are independent. The probability PL defined by the density process
Epr [d(]ir% |GM] = pi(L) is the only one that is identical to P on F..,. We introduce
the process Y by

yM = 5(- /0 péM(L)dééM), (3.2)

where £ denotes the Doléans-Dade exponential. A straightforward computation
yields d((Y;*)™") = (M) "o} (L)dB:. Thus, VM = 475, that is, ;' is the
Radon-Nikodym density of the change of probability P* with respect to P on GM.
The process Y™ is important in the study of risk-neutral probabilities on G™.
Indeed, let ¢ be the price process of a default-free financial instrument. It is an
F-adapted process which is an F-local martingale under certain [F risk-neutral prob-
ability Q (which is equivalent to P). In general ¢ is not an (G™, Q)-local martingale.

However, if we define a new probability measure Q™ by
dQ" =YMdQ on G/,

then any (F,Q)-local martingale is an (GM, QM )-local martingale. In particular,
B is a (GM,QM)-Brownian motion. Moreover, one has the following martingale
representation property by Amendinger [1]: if A is a (G™,QM)-local martingale,
then there exists ¢ € L}, .(B,GM,QM) such that A, = Ay + fot 1sdBs. This shows
that the market is complete for the manager.

3.2. Pricing with full information

We consider now the pricing problem with the manager’s information flow H = GM
and we assume Assumption 3.1. In order to distinguish the impact of different
filtrations and the impact of different pricing measures, we first assume that the



pricing probability is P for all agents. The result under Q™ the risk-neutral prob-
ability for the manager, is computed in Sec. 6 by a change of probability measure.

Our objective is to establish the pricing formula for the manager with respect
to the default-free filtration F. We begin by giving the following useful result.

Proposition 3.1. For any 6 >t and any positive Fy @ B(R)-measurable function
¢o(-), one has

Ep[¢o(L) L 50y |GM] = ]ﬁEP[¢9($)p0($)l{Xg>m} | File=L (3.3)

where p(x) is defined in (3.1).

Proof. Let PL be the equivalent probability measure of P of density p;(L)~! on
GM. By using the facts that Fy and (L) are independent under P¥ and that P is
identical to P on F.,, we have

Epl¢o(L)1r501 1G] = Bpl¢o(L)1(xs>1y | Fi V o(L)]
= pi(L) " Epr [¢o(L)po (L)L (x5 1y | Fe V o (L)]
= pe(L) " Eor o ()po ()1 (x5 50} | Fila=r
= pi(L) " Eedo(2)po ()1 x5y | Filo=r- (3.4)

a

Remark. If 7y and o(L) are independent under P, then p;(z) = 1, we obtain the
simpler formula

Epl¢o(D)1(r>0y |G = Eploo(2)11x;550) | Filo=r-

Proposition 3.2. We keep the notation of Sec. 2 and define FM(x) :=
pt(2)1x; >y where p; is as defined in Eq. (3.1). The value process of the contingent
claim (C,G, Z) given the fullinformation (GM)i>o is

VML)

VM =1, 2 3.5
t {r>t} pt(L) ( )
where
_ T T
VM(L) = RyEp |CR;' F () +/ FM(2)R;71dG, —/ ZR;YAFM (z) ft] )
t t
x=L
(3.6)

Proof. Using Proposition 3.1, the first part of (2.1) is given by
Ry

E 1 —1 M _
RiEp[Clirsmy Ry 1G] e(D)

Ep[CR; ' pr(z)1ix: 50} | File=L-
Let’s see the third term
R Ep[Z: R oer<ry |G,



We begin by assuming that Z is a stepwise F-predictable process as in [2], that is
Zu =Y o Zil{ticu<tay for t <u < T wheretg =t < - < tpp1 =T and Z; is
Fi,-measurable for ¢ = 0,...,n. We have

E]P’[ZT 1{t<T§T} |gt]\/[]

. 1
Z( EIPL lpti(L)]-{ti<T}|gL{w] _MEPL [Ziptz‘-H(L)l{ti+1<‘r}|gtlvl]>

=0

>

i=0

Zip, ( )1{Xt*i>w} |‘7:t] - EP[Zipti+1(x)1{X;i+l >a:}|‘7:t])I:L

ft] |
z=L

We define FM(x) = py(2)1{x; >4} For z fixed, 1{x; >} is decreasing and right con-
tinuous, and according to [18], (ps(x))s>o is an (F, P)-martingale. Thus (FM (z)):>0
is a nonnegative (F,P)-supermartingale, and we may deal with its right-continuous
modification with finite left-hand limits. Therefore

ZZ i (@) = F(2)

Pt

~.

E]P’ ZZ pt 1{X* >z} T pti+l( ) {X; >w})

t+1

Ep[Zlper<ry | GM] = Ep

ft]
=L

1
= _—EP

(@) i

/ ! Z,dFM ()

t

=L

Finally, we get the third term of (2.1) by approximating (Z, R, '), by a suitable
sequence of stepwise F-predictable processes:

tEP

_ R
REp|Z- R ey <1y |G ] = )

T
/ Z. R YdFM (2)

t

ft] |
=L

The second term of (2.1) can be decomposed in two parts as follows: the first part
(respectively the second part) can be treated similarly as the first term (respectively
as the third term) of (2.1)

T
R:Ep / 1= Ry NG, gtM]
t
T T
= RiEp 1{T>T}/ R;ldGu—i—l{KTST}/ R, 'dG, gtM]
t t
Rt T T u
= ——=FEp |pr(z )1{X*>w}/ R;ldGu—/ / R;7YdG dFM (z)| Fy .
pt(L) T t ¢ Ji -




Putting the three terms all together leads to

Ry _ T
VM= ——_FEp|FM(z)| CR 1+/ R;'dG.,
C D™ T”( T,
T s
—/ <ZSR51+/ RuldGu) dFM (2)| F, .
t ¢ L
The equality (3.5) then follows by an integration by part. O

4. Progressive Information
4.1. Pricing with progressive enlargement of filtration

The progressive information on L corresponds to the standard information modeling
in the credit risk literature where an investor observes the default event when it
occurs. Recall that

G = (Gt)i>0 with G, = F; V Dy,

where D; = D}, , DY = o(r At). The pricing formula (2.1) when H, is G; is well
known. We recall it briefly below and we refer to [2, 3] for a proof.

Recall that the G-compensator of 7 (under the probability P) is the G-
predictable increasing process A such that the process (Lgr<ty — APt >0)is a
(G, P)-martingale. The process A® coincides on the set {t < 7} with an F-predictable
process AF| called the F-compensator of 7. We define S; := P(1 > t| F;) = P(X] >
L|F;), which is the Azéma supermartingale of 7. The following result is classical
(see [2, 11, 20]).

Proposition 4.1. For any 8 > t and any Fy-measurable random variable ¢,
one has

Ep[¢0Sy | Fi]

Eploolirsoy |Gl = 1roty s,

. (4.1)

where Sy := P(1 > t| Ft). The value process for an investors given the progressive
information flow G is

T T
R;15T0+/ R;lSudGu—/ R;'Z,dS,
t t

R
V, = 1{T>t}§:EP ]—"t]. (4.2)

Remark 4.1. Note the similitude between the case of manager (Proposition 3.2)
and the case of investor (Proposition 4.1). Comparing the pricing formulas
(3.5), (3.6) and (4.2), we observe that F™ plays a similar role in the full infor-
mation case as S does in the progressive information case.



The pricing formula for delayed information flow is similar since G is the
progressive enlargement of FP with respect to 7 and FP is a sub-filtration of F. The
only difference is that S; and R; are not ]-"tD -measurable.

Proposition 4.2. For any 0 > t and any Fy-measurable random wvariable ¢y,
one has

Ep|¢9Se| FP
E 1, Dl=lpopy——r2 "t 4.3
pldolir>01 1G] = Lty AR (4.3)
The value process for a delay-informed investors is
1 R TR TR
vP = 8 g Zlsc / LS, dG, — | SLZ,dS.|FP|. (44
CTESIE B R . R R

4.2. Intensity hypothesis

In the reduced-form approach of credit risk modeling, the standard hypothesis is the
existence of the intensity of default time 7. We say that 7 has an F-intensity if its
F-compensator AF is absolutely continuous with respect to the Lebesgue measure,
that is, there exists an F-adapted process A" (called the F-intensity of 7 under P)
such that (1{;<¢ — fg A Mds,t > 0)is a (G, P)-martingale. The intensity hypothesis
implies that 7 avoids the F-predictable stopping times and that 7 is G totally
inaccessible.

Under the intensity hypothesis, the Doob-Meyer decomposition of the super-
martingale S has the explicit form: the process (S; + fg S A\ du,t > 0) is an
F-martingale. The pricing formulae (4.2) and (4.4) can be written as

1,onR T 4
V, = %EP R;15T0+/ R;lsudGu+/ R ZuSuAydu ft]’ (4.5)
t t t
1 R "R "R
T (e NN L / B g.ac, / 2 7 SuNEdu| FP |, (46
K E[S|FP] " | Re T " ¢ Ru " ¢ R w 0

Note that the intensity does not always exist. For example, in the structural
model where L is deterministic, 7 is an F predictable stopping time. Hence its
intensity does not exist. It is in general a difficult problem to determine the existence
of the intensity process (see Guo et al. [14, 15] for a detailed discussion).

In contrast to the notion of intensity as above, the default intensity in the credit
analysis is often referred as the instantaneous probability of default at time ¢ con-
ditioned on some filtration (H;)i>o0:

1
— 1 <
A Alirilo AtP(t <7 <t+At|/H:) as



Under Aven’s conditions (see [14, 15]), the two intensities coincide. But this is
not true in general. For example, in the classical structural model, the default
intensity equals to zero. However, the intensity process does not exist in this case.
The default intensity when H; = F has been studied in many papers such as [7,
9, 14, 19], the default intensity is strictly positive in the delayed information case.
‘We note that in the full information case where H; = ggi , we encounter the same
situation as in the structural model: the default intensity equals to zero since L is
GM_measurable.

5. Noisy Full Information

In this section, we consider the insider’s information flow. Recall that the insider
has a perturbed information on the barrier L which changes through time. We
assume that the perturbation is given by an independent noise, and is getting clearer
as time evolves. To be more precise, the noised barrier is modeled by a process
(Lt = f(L,€t))t>0, where f : R? — R is a given Borel measurable function, and € is
a process independent of Fu. The information flow G! = (GI);>¢ of the insider is
then given by

Gl i=FiVo(Ls, s<t)VD.

5.1. Perturbed initial enlargement of filtration
We firstly make precise the mathematical assumptions in this case. We introduce
an auxiliary filtration F! = (F/);>0 defined as

.7-"{ =FVo(Ls, s <t).

Note that G' is a progressive enlargement of F! by the information on the default.
The filtration F/ has been studied in Corcuera et al. [8] under Assumption 3.1. It
has nice properties similarly to the filtration GM. With the notation of Sec. 3.1,
assume that pf := Ep[p} (L)|F/] satisfies [ |pf|dt < +o0 P-a.s. Then the process
B! defined as B! := B, — fot plds is an (F!,P)-Brownian motion. Moreover, the

Doléans-Dade exponential
v!= 5(—/ pgdég)
0

is a positive (F/,P)-local martingale. We assume that Y/ is an (F!, P)-martingale
and define the probability measure Q7 by

dQ!' =Y/dQ on F/!

where Q is an equivalent probability of P. Then any (F,Q)-local martingale is an
(Ff,Q!)-local martingale. In particular, B is an (F!, P!)-Brownian motion.



5.2. Pricing with noisy information

We now consider the pricing problem for the insider information flow G’. We shall
focus on the particular but useful case:

Lt:L+Et,

where € is a continuous process independent of Fo, V (L) and is of backwardly
independent increments whose marginal has a density with respect to the Lebesgue
measure (example in [8] and [16]). We say that a process € has backwardly indepen-
dent increments if for all 0 < s < t < 0, the random variable €5 — ¢; is independent
to €g. For example, if one takes ¢, = Wyp_y) with W a Brownian motion, and
g:[0,T] — [0,+00) a strictly increasing bounded function with ¢(0) = 0, then € is
a process on [0, 7] which has backwardly independent increments. Another example
with infinite horizon is ¢; = Wg(t%y where g : [0,1] — [0, +00) a strictly increasing
bounded function with ¢(0) = 0.

To compute the pricing formula (2.1) for the insider where H; = G/, our strategy
is to combine the results in the two previous sections using the auxiliary filtration
F!. More precisely, we present firstly in Proposition 5.1 a result for the filtration F!
which is similar to the one in Proposition 3.1 for the filtration G™. We then use it
to obtain the pricing formula in Theorem 5.1. In fact, since G is the progressive
enlargement of F/, applying (4.2) leads to the value process for insiders:

1 - R T T
V= %EP R;lS§C+/t R;lsidau—/t R;'Z,dSH FI (5.1)
t

where S/ := Ep[1{;~4|F}]. In the rest of the section, we aim to give a reformulation
of (5.1) as a conditional expectation with respect to the default-free filtration F. It
is interesting to remark that although the formula (5.2) in Proposition 5.1 seems to
be complicated, the final result (5.6) is given in a simple and coherent form that is
similar to those for the full and the progressive information.

We assume Assumption 3.1 in the sequel, that is, the conditional probability
law of L given F; has a density p;(-) with respect to the unconditioned probability
law of L.

Proposition 5.1. We assume Assumption 3.1. Let € be a continuous process, inde-
pendent of Foo V o(L), and with backwardly independent increments such that the
probability law of €; has a density q:(-) with respect to the Lebesque measure. For
anyt >0, let Ly = L+¢e and Ff = FVo(Ls,s <t). Then, for any 6 >t and any
positive Fy @ B(R)-measurable function ¢o(-), one has

Ep[do(Lo)1(r>0y | F/]

_ ff Eplgo(u+ y)pe(l)l{xg>l} | Filu=r,q:(L¢ — l),ut,e(dy)PL(dl)
- T el (L — DPE(d)

(5.2)



where PL is the probability law of L, e is the probability law of eg — €;. For any
Fo-measurable ¢g, one has

[ Epldopo(D)1ix;51y | Filar(Le — 1) P (dl)
Eelbobimol 7] = e —h e

Proof. Since € has backwardly independent increment and is independent of Fy V
o(L), one has

Ep[¢o(Lo)(rsoy | Fi] = Epldo(L + €)1 xz>ry | Fi Vo(Li) Voles — e, s < t)]
= Ep[¢o(L + €)1 xs>ry | Fe V o(Le)]. (5.3)
By the independence of Fy V o(L) and €, we obtain
Ee[po(Lo)lir>ey | Fi V o(Li) Vo(L)]
= Ep[¢o(Lo)lix;>ry | Ft Vole) Vo(L)

= /REP[%(Lt +y) x>y | Fe Vole) Va(L)lpto(dy)
= /REP[QS&(L +z+y)lixssoy | FeV o(L)]=e pit,0(dy)

= pi(L)~! / Ep[¢o(x +y + 2)po(@)1(xz >0} | Felo=Lt,0(dy),
R Z=¢€¢

where the last equality comes from Proposition 3.1. In the rest of the proof, we
denote by

L L) = (0" [ Beloo(u+-u)pol@) x| Fi y=p o).

By definition and similar argument as for (5.3), one has
Ep[¢0(Lo)1(rs0y | Fi] = Ep[Hi(L, Lo)|Fi Vo (Le) V o((e — €5),5 < t)]

= E[Hy(L, L) | F+ V o(Ly)).

Let PE(dl) be the regular conditional probability of L given F;. Then for U € B(R?),

(L, L) €U | F)) = /

1y (1, x)q (x — 1) PE(dl)dz
R2

Therefore

(I, Ly)qe(Le — 1 tLdl
EHy(L, L) | F{] = Ja Hfﬂi th(L)f_(Lz)PtL()d];) <

By the equality PF(dl) = p:(I)PL(dl), we obtain the desired result. The second
equality is obtained in a similar way. O

(5.4)



As a consequence of Proposition 5.1, the conditional expectation Ep[1{,¢y|F]
can be written as SI(L;), where SI(-) is the F; ® B(R)-measurable function
defined as

Je Lixrsuype(Dge(x — 1) P (dl)
Jept(Dage(x —)PE@d)

Shx) = (5.5)

In the following result, we compute (5.1) as F-conditional expectations.

Theorem 5.1. We keep the notations and assumptions of Proposition 5.1 and recall
that GI = F} vV Dy. Then the value process for the noisy full information flow G is
given by

1
vI— {r>t} /V L, — )PE(dl 5.6
S T e, 0P ) Dai(Ly — 1)P*(dl) (5.6)

where VM and FM are defined in Proposition 3.2.

Proof. To obtain results with respect to F;, we shall calculate respectively the three
termb of (5 1) using Proposition 5.1. Let Ny(x) := [; 1ixssiype(ge(x — )P (dl) =
Jo FM (Dge(x — 1) PE(dl). Firstly,

a!| Beligr Loy | 7]
{T>t} EP[l{r>t} |-7:t]

C
Ep|—1¢.
IP[RT {r>T}

-k [ o]

where the second equality comes from Proposition 5.1. Secondly, using the same

T dG
Q{] :/t Ep |:]-{‘r>0} Re gt:|

1{T>t} // [ dGe

Thirdly, similar as in the proof of Proposition 3.2, we assume 2, =
oo Zilgticus<tiyy for t < u < T where tg =t < -+ < tpp1 = T and Z; is
Fi,-measurable for ¢ = 0,...,n. We have

argument,

T
dGy
ElP’/]-TH
g’ {>}R

.7:,5:| qt(Lt — l)PL(dl)

EpZ:1{cr<ry | Gf]

_ Ly
Si

Z EIP’[Zil{t,i<-r} - Zil{tri+1<7} |‘7:75]]
=0



_ 1
{ >t} /ZEIP it ( 1{X* sy | Fi

- E}P[Zz‘pti+1(33)1{xzi+l>m} | Fil)ae(Le — 1) PE(dl)
1
{ >” Z / Bp | Zy(FM() - F%l(m‘ft
L) /E / Z,dFM (1)
Nt Ly) e

We get the third term by approximating (Z,R; '), by a suitable sequence of
stepwise F-predictable processes:
/ —dFM(l)

We combine the three terms to complete the proof. O

qt(Lt — Z)PL(CZZ)

Fi

qt(Lt — Z)PL(dl)

1y
Ep[Z; R 1 ycrery | GF] = {>t} /Ep Fi| qi(Ly — 1)PE(dl).

6. Risk-Neutral Pricing and Numerical Illustrations
6.1. Pricing under different probabilities

To evaluate a credit derivative, both the pricing filtration and the choice of risk-
neutral probability measures depend on the information level of the market agent.
In the previous sections, we have computed the pricing formula (2.1) for different
information filtration under the same historical probability measure. In the follow-
ing, our objective is to take into account the pricing probabilities for each type of
information.

We have made precise different pricing probabilities. First of all, we assume that
a pricing probability Q is given with respect to the filtration F of the fundamental
process X. Usually, we choose Q such that X is an (F,Q) local martingale. Since
we shall focus on the change of probability measures due to the different sources of
informations and on its impact on the pricing of credit derivatives, we may assume,
without loss of generality, the historical probability P to be the benchmark pricing
probability Q on F. For the same reason, we will consider the same pricing probabil-
ity for the filtration IF and its progressive enlargement G.? Given the pricing proba-
bility Q on F (and thus on G) the pricing probability for the manager is Q™ where

%I =YM(L) with YM(L (= fy PY(L)(dBs—pl (L)ds)) (see Sec. 3.1) and for

the noisy full information is QI where dQ =Y with Y! = &(— [; pL(dBs — plds))

2In general, a (F, Q) local martingale is not necessarily a (G, Q) local martingale except under (H)
hypothesis. However, since all the filtrations we consider contains the progressive enlargement, we
prefer to concentrate on the change of probabilities due to different sources of information and we
keep the same pricing probability for F and G.



(see Sec. 5.1). We also take Q as the pricing probability for the delayed information
because the delayed information case is more complicated: indeed, the notion of a
FP Brownian motion is a widely open question that we do not want to investigate
here and we assume that the pricing probability for the delayed case is the same as
for the progressive information.

The following proposition gives the price of a credit derivative for the full and
the noisy information if we take into account not only the enlargement of filtration
but also the change of pricing probability due to this insiders’ information. Since
we take P as the pricing measure, note that for the investors with progressive or
delayed information, there is no change of pricing probability, so the results of
Propositions 4.1 and 4.2 still hold.

Proposition 6.1. We assume Assumption 3.1.

(1) Define FtQM (I) = Yxs>1y- Then the value process of a credit sensitive claim
(C,G, Z) for the manager's full information under the risk neutral probability
measure QM is given by

T
V" =1y BB | CRFFR (w) +/ FE @)RG,

t

4 |
=L

(2) Let € be a continuous process with backwardly independent increments such
that the probability law of €¢; has a density q:(-) w.r.t. the Lebesque measure.
Then the value process for the insider’s noisy full information under QT is
given by

T
— / ZR7YFY (1)

t

Tty

Ve =
fR Qt Lt -1

e | T WL -DPHa) o)
where

E T
V2 (1) = R.Ep CR;lFt{T(u,Z)Jr/ Fly(u,1)Ry 'dGy
t

ft‘| )
u=1Ly

Fawt) =¢( [ /psu+yute<dy>d3) Q).

T
[t
t

To prove the second assertion of the above proposition, we need the following
lemma which is an extension of Proposition 5.1. We give the proof of Proposition 6.1
afterwards.



Lemma 6.1. We keep the notations and assumptions of Proposition 5.1. Then, for
any 0 >t and any Fp-measurable ¢g, one has

J EplooF o(u, 1) | Filu=r,q:(Le — )P (dl)
I 1N _ 1 )
E]P’[Ye ¢91{T>0}|ft] _)/t prt(l)Qt(Lt—l)PL(dl) )

where PL is the probability law of L, j11 g is the probability law of eg—e; and Ft{g(u, 1)
is defined in Proposition 6.1.

Proof. First, let us recall, that Y} = S(fOT prdB,)~! and pf = E(pM(L)|Fl) =
S ot (Dg: (Le—1) P (dl)
J ae(Le—1)P}(dl)
backwardly independent increment and is independent of Fy V (L), one has

= pl(Lt). (Y!)i>o is an (F!,P) martingale. Since € has

Ep[oYy 1(r=0y | F7]

0 —1
= YtIEIP’ [qﬁgc‘: (/ p{L(Lu)dBu> 1{X;>L} FV O'(Lt) V 0'(65 — €¢, S S t)]
t

0 —1
= Y’tIEP ¢0(€ (/ p{L(L + EU)dBu> 1{X;>L} FV O'(Lt)] .
t

By the independence of Fy V o(L) and €, we obtain

—1
0
E]P> ¢98 (/ p,{,{(L + Eu)dBu> ].{.,->9} ft \Y O'(Lt) \Y U(L)
t

-1
0
= Fp ¢e€</ pi(LJreu)dBu) Lixg>ry| FeVol(e)Vo(L)
t

i 0
:/EP ¢98</ /pg(Lt+y)ut,e(dy)dBu> Lixsspy| FeVol(e)Vo(L)
R t

i 6
= / Ep [ ¢oE (/ /Pﬂ(L + 2+ y)ut,e(dy)d3u> Lixssry| Fe Vo(L)
R t

L Z=€t

2
:pt(L)*l/Elp ¢9p9(x)g</ /pﬂ(L—l—z—l—y),ut,e(dy)dBu) 1{Xg>z} Fi ,
R t



where the last equality comes from Proposition 3.1. The rest of the proof is similar
to the one of Proposition 5.1 , with

Hy(L, Ly)

= pe(L)~ /Ep dopo( (/ /Ps (u+y)m, 9(dy)dB> Lixgsay| Tt

z=L
u=Ly

O
Proof. (1) For the full manager, the proof is similar as the one of Proposition 3.2:

by noting that Q is chosen to be P, the probability measure Q™ coincides with
PL deﬁned in Sec. 3.1. Thus, the end of the proof of Proposition 3.2 still holds,

using F¥ = = lyxy>q} instead of FM.
(2) For the noisy information d = Y} with Y = & fT pLdB,)~t and pl =
pi(Le). Let Ny(x fR 1{X*>Z}Pt(l) t(@ =) PH(dl) = [ FM(Dae(Ly — 1) PH(dl)

and Ftle(u l) = 5 ft [ pE(u + y)ut,o(dy)dBs)~* po()lix;>1y. For T', | and u
fixed, (F} T(u 1))o<t<T is a nonnegative (F,P)- supermartmgale and we may
deal with its right-continuous modification with finite left-hand limits. Firstly,

2. [C, Egr |5 r>my | F]
¢ Ry 7T 'l > 077]

o ] lirsey

Ep| &Y sy | 7]
Ep(lirsn Y F

=1{>py

o'y vy .
because on the event {7 > t}, 4% |Qt 25|71 =Y, . Thus

1 T t} C
gf}: {r> /E [—Ff ,l’]-'} L, — )P (dl
t Nt(Lt) P RT t,T(u ) t L, qt( t ) ( )

C
Eqr |:R_Tl{T>T}

where the second equality comes from Lemma 6.1. Secondly, using the same

argument,
T
dGy
Eor / | O g
Q ] {r>0} "~ Ry t]
. /T Egr[1rs0y %2 | Ff
=1 Qlfr > t| F]]

g /T EplYy 1150y 552 |7/
S Ep[V/ 1750y F/]

Tty /
= E
N.(L,) )

T
Gy
Fo(u, 1) ——
/75 t,e(u )Re

]—"t] q:(Ly — 1)PE(dl)
u=1Ly



Thirdly, we assume Z, = Z?:o Zil{,<u<tyqy for t <u < T wheretg =t <--- <

tn+1 =1 and Z; is Fy,-measurable for ¢ = 0,...,n. We have
Eor|Z:1- <T}|fl]
Eor[Z:1 11 QA 2 {t<r<T) |t
QI[ {t<r<T} |gt] {r>t} QI[’T N t|ftI]

1 T>t
= { >} /Z EPZY ]‘{X* >I} |ft] E]P’[ZYt+11{X;‘i+1>I}|ft])u:Lt

X qt(Lt — l)PL(dl)

_ 1{T>t} /En»

X qt(Lt — l)PL(dl)

Lir>ey /E
Nt Ly)

We conclude in the same way as in Proposition 3.2. O

n

> ZiFL p(ul) = Ff, T(u»l))‘ft]
=0 u=1L¢

/ ZsdF! (u,l)

f,;| qt(Lt — Z)PL(dl)
u=L;

6.2. Numerical examples

We present numerical examples to illustrate the pricing formulas obtained previ-
ously. We shall consider the following binomial model for the default barrier L.

Example 6.1 (Binomial Model). Let L be a random variable taking two values
l;,ls € R, I[; <lg such that

P(L=0)=a, PL=Il)=1-a (0<a<l).
Note that L is independent of (F¢)¢>o.

We suppose that the asset values process X satisfies the Black Scholes model:

aX,

X,

It is classical in this model to calculate conditional probabilities ([2, Cor 3.1.2]). In
fact, for t > 0 and h,l > 0,

= pdt + odBy, t>0.

Ep(lix;>y — x>0 7)

-Y! —vh —2 ~Y! +vh
-1 . P t 4 62110' Yt@( t ))
i >l}< ( ovh ) ov'h

where @ is the standard Gaussian cumulative distribution function and

X 1
Ytl:mH—UBt—HnTO, withy:u_§g2'
This formula will allow us to obtain explicit pricing results in the binomial default

barrier model.



We give numerical comparisons of the value process of a defaultable bond for

different information, in Example 6.1 with the numerical values: [; = 1,l; = 3,a =
%. We have fixed a very small constant delayed time, which makes the pricing results
for the delayed information very close to the ones for the progressive information.
We present in each figure two graphs, one being the dynamic price of a defaultable
bond with zero recovery rate in the scenario of the firm value presented in the
second graph.
In the scenario of Fig. 1, the manager has fixed the lower value for the default
threshold. So she estimates smaller default probability and thus higher price for the
defaultable bond, compared to the ones estimated by other agents on the market.
We observe in addition that insider with noisy information has a better estimation
of the price compared to the investors with progressive or delayed information.

We observe similar phenomena in Fig. 2: the manager has fixed the upper value
for the default threshold and thus estimates higher probability of default and smaller
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price of the defaultable bond. Note that in the particular case where L is constant
(I; = ls), the price of the defaultable bond are the same, under whatever the infor-
mation we consider.

7. Conclusion

We have modeled the different levels of default information by several types of
enlargement of filtrations, leading also to different pricing probability measures.
We have taken into account these two aspects in the pricing of credit derivatives
and obtained in all the cases coherent formulas given with respect to the “default-
free” reference filtration. We have compared finally the pricing results by numerical
illustrations.
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