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We study the impact of asymmetric information in a general credit model, where the
default is triggered when a fundamental diffusion process of the firm passes below a
random threshold. Inspired by some recent technical default events during the financial
crisis, we consider the role of the firm’s managers who choose the level of the default
threshold and have complete information. However, other investors on the market only
have partial observations either on the process or on the threshold. We specify the
accessible information for different types of investors. Besides the framework of
progressive enlargement of filtrations usually adopted in the credit risk modelling,
we also combine the results on initial enlargement of filtrations to deal with the
uncertainty on the default threshold. We consider several types of investors who have
different information levels and we compute the default probabilities in each case.
Numerical illustrations show that the insiders who have extra information on the
default threshold obtain better estimations of the default probability than the standard
market investors.
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1. Introduction

In the credit risk analysis, it is crucial to model the default event and to forecast the default
probabilities for pricing and risk management purposes. In the literature there exist two
main modelling approaches: the structural one and the reduced-form one. The structural
approach provides a convincing economic interpretation, where the original idea goes
back to the paper of Merton [20]. The default is triggered when a fundamental process X of
the firm passes below a deterministic threshold L. The fundamental process may represent
the asset value or the total cash flow. The level L is chosen by the firm’s managers
according to some economic criterions, for example, maximizing the equity value. The
default time defined in the structural approach is a predictable stopping time and is
considered as an observable event once the process approaches the threshold. In the
reduced-form approach, the default is assumed to arrive in a more ‘surprising’ way,
especially in the short term. The uncertainty is often characterized by the level of the credit
spread or the default intensity. The model parameters can be calibrated from market data.

The links between the two approaches have been well studied by many authors. There
are in general two methods to introduce short-term default risks in a classical structural
model. The first way is to consider a generalized first-passage model, where the default
threshold L is supposed to be random (e.g. [7,10,18]). The second way is to suppose that
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the process X is partially observed by the investors (e.g. [2–4,6,12,16]). In both cases, the
information accessibility plays an important role.

Let us consider the first-passage model in a general setting. Let ðV;A;PÞ be a
probability space where A is a s-algebra of V representing the total information on the
market. We consider a firm and model its default time as the first time that a continuous
time process ðXtÞt$0 reaches some default barrier L, i.e.

t ¼ inf{t : Xt # L}; whereX0 . L ð1:1Þ

with the convention that inf Y ¼ þ1. Denote by F ¼ ðF tÞt$0 the filtration generated by
the process X, i.e. F t ¼ s ðXs; s # tÞ _N satisfying the usual conditions, where N
denotes the P null sets. We introduce the decreasing process X * defined as X*

t ¼
inf{Xs; s # t}: Then, (1.1) can be rewritten as

t ¼ inf{t : X*
t ¼ L}: ð1:2Þ

Note that the information of X*
t is contained in the s-algebra F t.

Such construction of a default time adapts to both structural and reduced-form
approaches of the default modelling. In the structural approach models, L is a constant
or a deterministic function L(t), then t defined in (1.1) is a predictable F-stopping time
(since the firm value ðXtÞt$0 is a continuous time process). In the reduced-form approach1,
the default barrier L is unknown and is described as a random variable in A. In the widely
used Cox Model [18], the barrier L is supposed to be independent ofF1 and the law of L is
known. In the incomplete information models such as [6,12,16], the whole process X
cannot be fully observed, so the information concerning X is represented by some
sub-filtration of F. In all the models, the default probabilities are computed with respect to
the observable information.

In this work, we are especially interested in the information asymmetry on the default
threshold L. This is motivated by some recent ‘technical default events’ during the crisis:
the firm is still in a relatively healthy situation, nevertheless, the managers have decided to
close the activities and the default occurs (see Leland [19]). Hence, the default barrier in
this case is a random variable whose value is chosen by the managers. In the literature, the
information on the value process of the firm has been thoroughly studied. However, only
few works concentrate on the default threshold. The information asymmetry on both the
underlying process X and the default barrier L has been considered in Giesecke [9] and
Giesecke and Goldberg [10], where the information flow for the managers, who know the
default barrier, remains F. Our approach is different: we consider the default threshold to
be an exogenous source of risk and we add the knowledge on L to the whole information
flow. The information of the managers then becomes F _ s ðLÞ. We study the problem by
using the theory of enlargement of filtrations. In addition, we consider another type of
investors, the insiders, who do not have the full access to the threshold value, but know
some extra information on it compared with other market investors. We compute
conditional default probabilities for these different investors and we show the importance
of the information level for their estimations of default probabilities.

The rest of this paper is organized as follows. In Section 2, we introduce different
information structures for various agents on the market. We distinguish the role of the
managers who choose the default barrier L, the insiders who have information on L and the
investors who only observe the occurrence of the default. We precise the mathematical
hypotheses, using the language of enlargement of filtrations. Section 3 is devoted to the



explicit calculations on the conditional default probabilities. We then give numerical
illustrations in Section 4 to quantify how different partial information impacts the
estimations of the default probabilities.

2. The informational structure

On the financial market, the available information for each agent is various. On one hand,
there is a strong information asymmetry between the managers and the investors of the
firm. The important point is that the managers have prior information on whether the firm
will default and the timing of the default. On the other hand, market investors do have
different information. We now describe the different information concerning the firm and
the threshold: we will consider four levels of information on the default threshold L and the
underlying process X. In the following, we suppose that the default barrier is fixed at the
initial date by the manager as the realization of the random variable L, and that all
investors observe the occurrence of the default.

2.1 Full information

The managers have perfect information on the firm. At any time t, they know the
continuous firm value, together with the default barrier. In other words, the managers have
complete information on both X and L. The information of the managers – called the full
information – is then given at time t $ 0 by

GM
t U F t _ s ðLÞ:

The filtration GM ¼ ðGM
t Þt$0 is in fact the initial enlargement of the filtration F with the

random variable L. For the manager, t is a predictable GM-stopping time. Let us make
precise the nature of this initial information.

Assumption 2.1. We assume that L is an A-measurable random variable with values in R,
which satisfies the assumption:

PðL [ ·jF tÞðvÞ , PðL [ ·Þ for all t for P almost all v [ V.

Remark. Assumption 2.1 is satisfied, if L is independent of F1.
Assumption 2.1 is the standard assumption by Jacod [14,15]. We denote by PL

t ðv; dxÞ a
regular version of the conditional law of L given F t and by PL the law of L. According to
Jacod, there exists a measurable version of the conditional density ptðxÞðvÞ ¼ ðdPL

t =dP
LÞ

ðv; xÞ, which is a ðF;PÞ-martingale and for all t $ 0, ptðLÞ . 0 P almost surely.
Grorud et al. [11] proved that Assumption 2.1 is equivalent to the existence of a

probability measure equivalent to P and under which for any t $ 0, F t and s ðLÞ are
independent. We consider the only one, denoted by QL, which is identical to P on F1.
The probability measure QL is characterized by the density process

EQL

dP

dQL jG
M
t

! "
¼ ptðLÞ: ð2:1Þ

It will play a key role in the computation of the conditional default probability.



2.2 Progressive information

The progressive information is the information level of an ordinary investor who observes
the process X, but does not have any knowledge on the barrier L, except that he observes at
time t whether the default has occurred up to t and if so, the exact timing of default. His
information is given as the progressive enlargement of filtration of F with t:

G ¼ ðGtÞt$0 with Gt ¼ F t _Dt;

where D ¼ ðDt ¼ <s.ts ðt ^ sÞÞt$0 is the minimal right-continuous filtration which
makes t a D-stopping time. The filtration G ¼ ðGtÞt$0 corresponds to the standard
information flow in the credit modelling. We call this information the ‘progressive
information’ on L. We see that the filtration GM is larger than G.

Remark. If L is independent of F1, then the so-called (H)-hypothesis is satisfied: every
ðF;PÞ local martingale is also a ðG;PÞ local martingale. The (H)-hypothesis is equivalent
to the equalityPðt . tjF tÞ ¼ Pðt . tjF1Þ for all t $ 0. This hypothesis is standard in the
credit risk modelling. For example, the widely used Cox process model [18] satisfies this
hypothesis.

2.3 Noisy full information

We now consider an intermediary case: the case of an insider who is an investor having
additional observations on L besides the information on D and on F. We assume that the
additional information on the barrier L changes through time: the knowledge on L is
distorted by an independent noise, and is getting to him clearer as time evolves. More
precisely, we suppose that this insider observes Ls ¼ Lþ e s at time s with ðe sÞs$0 being an
independent noise perturbing the information on L. The information of the insider is then
given by the following filtration GI ¼ ðGI

t Þt$0 and is denoted as the ‘noisy full
information’:

Assumption 2.2. For any t $ 0, GI
t ¼ F I

t _Dt where F I
t ¼ >u.tðF u _ s ðLs; s # uÞÞ, Ls ¼

Lþ e s with

. e ¼ {e t; t $ 0} is independent of F1 _ s ðLÞ:

. PðL [ ·jF tÞðvÞ , PðL [ ·Þ for all t for P almost all v [ V.

If we work on a finite horizon T, the last two assumptions are

. e ¼ {e t; t # T} is independent of F T _ s ðLÞ,

. PðL [ ·jF tÞðvÞ , PðL [ ·Þ for all t [ ½0; T½ for P almost all v [ V.

The process e represents an additional noise that perturbs the knowledge of the barrier L.
Therefore, one expects in general that the variance of the noise decreases to zero as time t
goes to infinity.

2.4 Delayed information

In this subsection, we consider the case where the process X driving the default risk is not
totally observable for all agents. We suppose that at date 0, all investors are completely
informed on the firm value. Later on, they will be differently informed on the process X.
Let us assume in the sequel that the process X is associated with a standard Brownian



motion B (for example, X is a geometric Brownian motion or the solution of some SDE).
Let N denote the P null sets and we assume that F t ¼ s ðBs; s # tÞ _N , where F ¼
ðF tÞt$0 represents the information of an investor having complete information of the
fundamental process X. Most investors on the market only have an incomplete observation
described by an auxiliary filtration of F. In the literature, there are several ways to describe
the incomplete information.

Example 2.3 (Noisy information). A structural type model with deterministic barrier is
studied in [3]. The partial information is represented by an auxiliary process b depending
on some noisy signal of the process X. The information of an investor observing the noisy
signal of X is represented by the filtration Fb

t U s ðbs; s # tÞ _N .

Example 2.4 (Delayed information). The investors may have a delayed (continuous or
discrete) observation of the fundamental process X; this type of models has been
considered, among others, by [4,6,12,16]. In this case, the observable information is
characterized by a sub-filtration FD ¼ ðFD

t Þt$0 of F, constructed by either a time change
(continuously delayed filtration) or by a discretely delayed filtration.

In the following, we are particularly interested in the delayed information case. Let

FD
t ¼

F 0; if t # dðtÞ;
F t2dðtÞ; if t . dðtÞ;

(

where dðtÞ is some function on t. The above formulation covers the constant delay time
model where dðtÞ ¼ d (see [4,12]) and the discrete observation model where
dðtÞ ¼ t2 tðmÞi , tðmÞi # t , tðmÞiþ1 where 0 ¼ tðmÞ0 , tðmÞ1 , · · · , tðmÞm ¼ T are the only
discrete dates on which the ðF tÞt$0 information may be renewed (release dates of the
accounting reports of the firm, for example, see [6,16]). In this case, the information of the
investors is represented by the progressive enlargement of filtration of FD with t:

GD
t U FD

t _Dt:

We call the information related to the filtration GD ¼ ðGD
t Þt$0 as the ‘delayed information’.

3. Default probabilities with information asymmetry

Our aim is to compute the conditional probabilities of default with respect to the different
filtrations introduced in the previous section. More precisely, we computePðt . ujHtÞ for
all t , u, where the filtration ðHtÞt$0 describes the accessible information for the
investors. Remark that the default time t is a ðHtÞt$0 stopping time for all the four levels of
information we consider.

3.1 Full information

Proposition 3.1. IfHt ¼ GM
t is the full information, then under Assumption 2.1, we have

for any u . t,

P t . ujGM
t

# $
¼ 1

ptðLÞ
½EPðpuðxÞ1X*

u.xjF tÞ&x¼L; ð3:1Þ



where ptðxÞðvÞ ¼ ðdPL
t =dP

LÞ ðv; xÞ, PL
t ðv; dxÞ being a regular version of the conditional

law of L given F t and PL being the law of L.

Proof. Using the facts that F u and s ðLÞ are independent under QL, that EQL

½ðdP=dQLÞjGM
t & ¼ ptðLÞ, and that QL is identical to P on F1, we have

Pðt . ujGM
t Þ ¼ EPð1X*

u.LjF t _ s ðLÞÞ

¼ 1

ptðLÞ
EQLðpuðLÞ1X*

u.LjF t _ s ðLÞÞ

¼ 1

ptðLÞ
½EQLðpuðxÞ1X*

u.xjF tÞ&x¼L

¼ 1

ptðLÞ
½EPðpuðxÞ1X*

u.xjF tÞ&x¼L: A

Remark. If F u and s ðLÞ are independent under P, we obtain the simple formula

P t . ujGM
t

# $
¼ P

X*
u

t ð&L;þ1½Þ;

where P
X*
u

t ðdyÞ is the regular conditional probability of X*
u given F t.

3.2 Progressive information and the delayed case

The case with progressive information corresponds to the standard reduced-form
modelling approach and the computation results are well known in the literature
(e.g. [1,8,17]). In this case, the investor knows the information on the underlying process.

Proposition 3.2. IfHt ¼ Gt ¼ F t _Dt is the progressive information, we have for u . t

Pðt . ujGtÞ ¼ 1t.t

E PL
uðX*

uÞjF t

# $

PL
t ðX*

t Þ
:

Proof. Classical computation in the progressive enlargement leads to

Pðt . ujGtÞ ¼ 1t.t
Pðt . ujF tÞ
Pðt . tjF tÞ

¼ 1t.t
EðSujF tÞ

St
; u . t;

where St ¼ Pðt . tjF tÞ. In our model, S is given explicitly by St ¼ PðX*
t . LjF tÞ ¼

PL
t ðX*

t Þ with PL
t being the conditional law of L given F t. This gives the result. A

In the classical reduced-form models, such as the Cox process model, the
interpretation of the underlying process is different from the one in the model (1.1). Let
Lt ¼ X0 2 X*

t . The interpretation of this positive and increasing process is the
compensator of default in the reduced-form models. The default is defined as the first
time that the compensator process reaches the independent upper barrier ~L ¼ X0 2 L. The
process L can be calibrated from market data and the barrier L̃ is supposed to follow the
unit exponential law. In this case, we recover the well-known formula Pðt . ujF tÞ ¼
E½e2ðLu2LtÞjF t& for u . t. Furthermore, if L is absolutely continuous w.r.t. the Lebesgue



measure, i.e. Lt ¼
Ð t
0lsds, then the positive process l is called the default intensity. We

have that the process ð1t#t 2
Ð t^t
0 lsds; t $ 0Þ is a G-martingale.

In the case with delayed information, explicit computations have been given for
specific delayed information GD in the literature such as in [2,4,6,12]. Here, we just give a
general computation formula without discussing the details.

Corollary 3.3. If Ht ¼ GD
t ¼ FD

t _Dt is the delayed information, we have for u . t

P t . ujGD
t

# $
¼ 1t.t

E PL
uðX*

uÞjFD
t

# $

E PL
t ðX*

t

# $
jFD

t Þ
: ð3:2Þ

Proof. Similar as in the progressive information case,

P t . ujGD
t

# $
¼ 1t.t

P t . ujFD
t

# $

P t . tjFD
t

# $ ¼ 1t.t

E SujFD
t

# $

E StjFD
t

# $ ¼ 1t.t

E PL
u X*

u

# $
jFD

t

# $

E PL
t X*

t

# $
jFD

t

# $ :
A

3.3 Noisy full information

In this subsection, Ht ¼ GI
t . We consider the particular but useful case in finite horizon

time T where Lt ¼ Lþ e t, e t ¼ ZT2t, Z being a continuous process with independent
increments whose marginal has density qt (this example was introduced in Corcuera et al.
[5] to study insider’s portfolio optimization problems). For example, e t ¼ WgðT2tÞ withW
an independent Brownian motion, and g : ½0; T&! ½0;þ1Þ a strictly increasing bounded
function with gð0Þ ¼ 0.

Proposition 3.4. We assume thatHt ¼ GI
t is the noisy full information with Lt ¼ Lþ e t,

e t ¼ ZT2t, Z being a continuous process with independent increments whose marginal has
density qt. Then, we have for u . t,

P t . ujGI
t

# $
¼ 1t.t

Ð
R

1
ptðlÞEPðpuðlÞ1X*

u.ljF tÞqT2tðLt 2 lÞPL
t ðdlÞÐ

R 1X*
t .lqT2tðLt 2 lÞPL

t ðdlÞ
; ð3:3Þ

where PL
t is a regular version of the conditional law of L given F t and ð1=ptðlÞÞ

EPðpuðlÞ1X*
u.ljF tÞ is the conditional default probability for the full information on the

event {L ¼ l} (see Proposition 3.1).

Proof. We recall that GI
t ¼ F I

t _Dt. A first step is to compute Pðt . ujF I
t Þ.

Let Au [ F u and h be a bounded measurable function. Using the independence of
F u_t _ s ðLÞ and Z, we have

EðhðLÞ1Au jF I
t Þ ¼ E hðLÞ1Au jF t _ s ðLtÞ _ s ððe t 2 e sÞ; s # tÞ

# $

¼ E hðLÞ1Au jF t _ s ðLþ e tÞ
# $

:

Let PL
t ðdlÞ be the regular conditional probability of L given F t. Then for C [ BðR2Þ,

P ðL; Lþ e tÞ [ CjF t

# $
¼

ð

R2
1Cðl; xÞqT2tðx2 lÞPL

t ðdlÞdx:



Therefore,

E hðLÞjF I
t

# $
¼

Ð
R hðlÞqT2tðLt 2 lÞPL

t ðdlÞÐ
R qT2tðLt 2 lÞPL

t ðdlÞ
: ð3:4Þ

Hence, if u # t we have

P t . ujF I
t

# $
¼

Ð
R 1X*

u.lqT2tðLt 2 lÞPL
t ðdlÞÐ

R qT2tðLt 2 lÞPL
t ðdlÞ

:

If u . t, we use the following successive conditional expectations

P t . ujF t _ s ðLþ e tÞ
# $

¼ P P t . ujF t _ s ðLþ e tÞ _ s ðLÞ
# $

jF t _ s ðLþ e tÞ
# $

:

Using the fact that e is independent to F T _ s ðLÞ, we have

P t . ujF t _ s ðLþ e tÞ _ s ðLÞ
# $

¼ P X*
u . LjF t _ s ðe tÞ _ s ðLÞ

# $

¼ P X*
u . LjF t _ s ðLÞ

# $
V htðLÞ;

where htðLÞ ¼ ð1=ptðLÞÞ½EPðpuðxÞ1X*
u.xjF tÞ&x¼L corresponds to the conditional default

probability for the full information. Therefore,

Pðt . ujF I
t Þ ¼

Ð
R

1
ptðlÞEPðpuðlÞ1X*

u.ljF tÞqT2tðLt 2 lÞPL
t ðdlÞÐ

R qT2tðLt 2 lÞPL
t ðdlÞ

: ð3:5Þ

The second step to compute Pðt . ujGI
t Þ is straightforward using (3.5) and the well-

known relation in the progressive enlargement of filtration

Pðt . ujGI
t Þ ¼ 1t.t

Pðt . ujF I
t Þ

Pðt . tjF I
t Þ
:

A

Remark. This proof can be extended to other examples in the infinite horizon. For example,
let e t ¼ Wgð1=ðtþ1ÞÞ with W an independent Brownian motion, and g : ½0; 1&! ½0;þ1Þ a
strictly increasing bounded function with gð0Þ ¼ 0. Then e t is a centred Gaussian process
with independent increments. Let qt be the density of e t. We have for u . t,

P t . ujGI
t

# $
¼ 1t.t

Ð
R

1
ptðlÞEPðpuðlÞ1X*

u.ljF tÞqtðLt 2 lÞPL
t ðdlÞÐ

R 1X*
t .lqtðLt 2 lÞPL

t ðdlÞ
:

3.4 Credit spread

An important quantity in the credit risk analysis is the credit spread defined as the
instantaneous conditional default probability at time t:

lt ¼ lim
Dt!0

1

Dt
Pðt , t # t þ DtjHtÞ a:s:

In the reduced-form approach with the progressive information, it coincides with the
default intensity lF, which is the positive F-adapted process such that ð1{t#t} 2



Ð t^t
0 lFs ds; t $ 0Þ is a G-martingale. In the classical structural approach, the credit spread

tends to zero and the intensity does not exist since the default time t is a predictable
F-stopping time. The credit spread for the delayed information, i.e. when Ht ¼ FD

t , has
been studied in many papers such as [4,6,12,16]. In this case, the credit spread is strictly
positive for a short-term time.

We note that in the full information case where Ht ¼ GM
t , we encounter the same

situation as in the classical structural model: the credit spread equals to zero since L is
GM
t -measurable. For the insider with the noisy full information GI

t , Proposition 3.4 implies
that the credit spread remains to be zero. Because of the additional information he has on
the default barrier, there is no short-term uncertainty on the default for the insider.

4. Application and numerical illustrations

We are now ready to give explicit models for the conditional default probabilities in the
different settings of information. The direct application will be the pricing of the credit
derivatives such as the defaultable bonds. We implement the formulas in order to quantify
numerically how the different levels of information impact the estimations of the default
probabilities.

In the literature, the default threshold, if random, is generally supposed to be
independent of the filtration F generated by the firm value process. In this case, the
(H)-hypothesis is satisfied and the computations can be often simplified. In the following,
we first consider an independent threshold case. Moreover, we also give an example where
the default threshold is correlated to the underlying process X.

We consider the standard Black–Scholes model for the asset values process X:

dXt

Xt
¼ mdt þ s dBt; t $ 0;

where m and s are real constants and B is an F-Brownian motion. For t $ 0 and h; l . 0,
one has ([1, p. 69])

EPð1X*
t .l 2 1X*

tþh
.ljF tÞ ¼ 1X*

t .l F
2Yl

t 2 nh

s
ffiffiffi
h

p
( )

þ e2ns
22YtF

2Yl
t þ nh

s
ffiffiffi
h

p
( )( )

V 1X*
t .lFt;hðlÞ; ð4:1Þ

where F is the standard Gaussian cumulative distribution function and

Yl
t ¼ nt þ sBt þ ln

X0

l
; with n ¼ m2

1

2
s 2:

4.1 Case of an independent default threshold

The following corollary gives the conditional default probabilities in the Black–Scholes
model for any independent default threshold.

Corollary 4.1. We assume that the default threshold L is independent of F T . If the asset
process X satisfies the Black–Scholes model, then for any h . 0, we have

† Pðt þ h $ t . tjGM
t Þ ¼ 1t.tFt;hðLÞ:



† Pðt þ h $ t . tjGI
t Þ ¼ 1t.t

Ð
1X*

t .lFt;hðlÞqT2tðLt 2 lÞPL
t ðdlÞÐ

1X*
t .lqT2tðLt 2 lÞPL

t ðdlÞ
:

† Pðt þ h $ t . tjGtÞ ¼ 1t.t

Ð
Ft;hðlÞPLðdlÞÐ
1X*

t .lP
LðdlÞ :

† Pðt þ h $ t . tjGD
t Þ ¼ 1t.t

Ð
ðFt2dðtÞ;hþdðtÞðlÞ2Ft2dðtÞ;dðtÞðlÞÞPLðdlÞÐ

ð12Ft2dðtÞ;dðtÞðlÞÞPLðdlÞ ;

where Ft;h is defined in (4.1) and dðtÞ is the time delay.

We give numerical comparisons of the conditional default probabilities for different
information in the following binomial example, where li # ls are the two numerical levels
of the threshold. Let 0 , a , 1 and

L ¼
li with probabilitya;

ls with probability 12 a:

(

ð4:2Þ

In the simulation, we take the values: li ¼ 1; ls ¼ 3;a ¼ ð1=2Þ.
Comments: The probabilities of default for a full or noisy full information are significantly
different from the ones for the progressive or the delayed information. More precisely, if
L ¼ li, the manager has fixed the lower value for the default threshold and thus the
probability of default will be lower for the full information than for the progressive
information (see Figure 1), conversely if L ¼ ls, see Figure 2.

In both cases, the estimation of the default probability for the noisy full information is
between the estimations of the full and the progressive information. The difference
between the probabilities of default is very significant at the beginning and tends to vanish
as time t goes to maturity T. If L is constant (li ¼ ls), the probabilities of default are the
same, whatever the information we consider (see Figure 3). Not surprisingly, we observe
that the variation of the default probabilities is closely related to the variation of the firm
value. We note finally that the results between the progressive and the delayed information
are very close because we have chosen a small constant delay time.

4.2 Case of a dependent default threshold

In practice, the value of the firm or its forecasting plays an important role in the manager’s
decision to fix the default threshold. In the following, we consider the example where

L ¼ li1½a;þ1½ðXAÞ þ ls1½0;a½ðXAÞ; A . T; li # ls: ð4:3Þ

The manager chooses the level of L according to a constant threshold a and to the value of
the asset process X on some given date A (A . T where T is a fixed horizon time, for
example the maturity of the credit derivatives we consider).2 If XA $ a, the manager
believes that the firm is on healthy situation and chooses the lower barrier li, otherwise, he
chooses the higher barrier to accelerate the default.

We begin by computing the default probability for the managers. By Proposition 3.1,
Pðt . t þ hjGM

t Þ ¼ ð1=ptðLÞÞ½EPðptþhðlÞ1X*
tþh

.ljF tÞ&l¼L. Compared with the previous
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independent case, we first compute the conditional law of L given F t and then the
conditional joint law ðptþhðlÞ; 1X*

tþh
.lÞ given F t.

. We have explicitly for t , A

PðL ¼ lsjF tÞ ¼ PðXA , ajF tÞ ¼ FðktÞ; PðL ¼ lijF tÞ ¼ 12FðktÞ;

where

kt ¼
ln a2 lnX0 2 nA2 sBt

s
ffiffiffiffiffiffiffiffiffiffiffi
A2 t

p :

Hence,

ptðlsÞ ¼
FðktÞ
Fðk0Þ

; ptðliÞ ¼
12FðktÞ
12Fðk0Þ

:

. Using the following lemma given in [1], we deduce the conditional joint law of
ðYl

tþh; 1X*
tþh

.lÞ and ðptþhðlÞ; 1X*
tþh

.lÞ given F t.

Lemma 4.2. For y $ 0, on the set {t . t}

P Yl
tþh $ y; 1X*

tþh
.ljF t

* +
¼ F

2yþ Yl
t þ nh

s
ffiffiffi
h

p
( )

2 e2ns
22YtF

2y2 Yl
t þ nh

s
ffiffiffi
h

p
( )

;

where F is the standard Gaussian cumulative distribution function, Yl
t ¼ nt þ sBt þ

lnðX0=lÞ and n ¼ m2 ð1=2Þs 2.

We denote by f t;u;ls ðyÞ the conditional density defined by f t;u;ls ðyÞ ¼ ð›=›yÞPðYls
u $ y;

1X*
u.ls jF tÞ.
. Combining these two results, we have for u . t,

Pðt . ujGM
t Þ ¼ 1L¼ls

1

FðktÞ
EðFðkuÞ1X*

u.ls jF tÞ þ 1L¼li

1

12FðktÞ
Eðð12FðkuÞÞ1X*

u.li jF tÞ;

where FðktÞ ¼ glsðYls
t Þ with gls ðxÞ ¼ Fðlnða=lsÞ2 x2 nðA2 tÞ=s

ffiffiffiffiffiffiffiffiffiffiffi
A2 t

p
Þ and

EðFðkuÞ1X*
u.ls jF tÞ ¼ EðglsðYls

u Þ1ðY ls Þ*u.0jF tÞ ¼ 1X*
t .ls

ð1

0

gls ðyÞf t;u;ls ðyÞdy;

Eðð12FðkuÞÞ1X*
u.li jF tÞ ¼ 1X*

t .li

ð1

0

ð12 gli ðyÞÞf t;u;liðyÞdy:

This gives the conditional default probability for the full information.
The result for the noisy information is then straightforward using of Proposition 3.4.

The progressive and the delayed case are obtained by classical computations. For the
numerical illustrations, we have similar observations to those of the previous section.

5. Conclusions

We have investigated the impact of different information levels on the conditional default
probabilities. The conditional survival probability plays an important role in the pricing of



credit derivatives (we refer the reader to a forthcoming work [13]). For example, let us
consider a defaultable bond with zero recovery, that is, the buyer of the bond receives 1
euro if there is no default and zero otherwise. Then the price of such a product is exactly
the conditional survival probability with respect to the accessible information.

Although the information on the value process of the firm has been widely studied,
relatively few works concern the information on the default threshold. Our approach
combines the initial and the progressive enlargement of filtrations in the modelling of
information flows. Our results show that the information on the default threshold also has a
significant influence in the credit risk analysis and deserves to be studied in more detail.
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Notes

1. In the classical reduced-form model such as the Cox-process model in Lando [18], X is an
increasing process – the compensator process of default – instead of a decreasing one, and L is
an upper bound. See §3.2 for details.

2. In this example, the manager knows well the economic situation of the firm so that he has a good
prior judgement on whether or not the terminal value of the firm XA will be greater or smaller
than the constant threshold a.
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