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Abstract

Motivated by credit risk modelling, we consider a type of default times whose prob-
ability law can have atoms, where standard intensity and density hypotheses in the
enlargement of filtrations are not satisfied. We propose a generalized density approach
in order to treat such random times in the framework of progressive enlargement of
filtrations. We determine the compensator process of the random time and study the
martingale and semimartingale processes in the enlarged filtration which are impor-
tant for the change of probability measures and the evaluation of credit derivatives.
The generalized density approach can also be applied to model simultaneous default
events in the multi-default setting.
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1 Introduction

In the credit risk analysis, the theory of enlargement of filtrations, which has been
developed by the French school of probability since the 1970s (see e.g. Jacod [14],
Jeulin [17], Jeulin and Yor [18]), has been systematically adopted to model the default
event. In the work of Elliot, Jeanblanc and Yor [10] and Bielecki and Rutkowski [2], the
authors have proposed to use the progressive enlargement of filtrations to describe
the market information which includes both the ambient information and the default
information. Let (Ω,A,P) be a probability space equipped with a reference filtration
F = (Ft)t≥0 representing the default-free market information. Let τ be a positive random
variable which represents a default time. Then the global market information is modelled
by the filtration G = (Gt)t≥0, which is the smallest filtration containing F such that τ
is a G-stopping time and G is called the progressive enlargement of F by τ . In this
framework, the reduced-form modelling approach has been widely used where one often
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Generalized density approach

supposes the existence of the G-intensity of τ , i.e. the G-adapted process (λt, t ≥ 0) such
that (11{τ≤t} −

�
τ∧t

0 λsds, t ≥ 0) is a G-martingale. The process λ, also called the default
intensity process, plays an important role in the default event modelling. More recently,
in order to study the impact of default events, a new approach has been developed
by El Karoui, Jeanblanc and Jiao [8, 9] where we suppose the density hypothesis: the
F-conditional law of τ admits a density with respect to a non-atomic measure η, i.e. for
all θ, t ≥ 0, P(τ ∈ dθ|Ft) = αt(θ)η(dθ) where αt(·) is an Ft ⊗ B(R+)-measurable function.
The density hypothesis has been firstly introduced by Jacod [14] in a theoretical setting of
initial enlargement of filtrations and is essential to ensure that an F-martingale remains
a semimartingale in the initially enlarged filtration. There exist explicit links between
the intensity and density processes of the default time τ , which establish a relationship
between the two approaches of default modelling. In particular, the density approach
allows us to analyze what happens after a default event, i.e. on the set {τ ≤ t}, and has
interesting applications in the study of counterparty default risks. We note that, in both
intensity and density approaches, the random time τ is a totally inaccessible G-stopping
time which avoids F-stopping times.

In this paper, we consider a type of random times which can be either accessible or
totally inaccessible. The motivation comes from recent sovereign credit risks where the
government of a sovereign country may default on its debt or obligations. Compared
to the classical credit risk, the sovereign default is often influenced by political events.
For example, the euro area members and IMF agree on a 110-billion-euro financial aid
package for Greece on 02/05/2010 and another financial aid program of 109-billion-euro
on 21/07/2011. The eventuality of default-or-not of the Greek government depends
on the decisions made at the political meetings held at these dates. Viewed from a
market investor, there are important risks that the Greek government may default at
such critical dates.

From a mathematical point of view, the existence of these political events and critical
dates means that the probability law of the random time τ admits atoms. Hence the
sovereign default time can coincide with some pre-determined dates. In this case, the
classical default modelling approaches, in particular, both intensity and density models
are no longer adapted. To overcome this difficulty, we propose to generalize the density
approach in [8]. More precisely, we assume that the F-conditional law of τ contains a
discontinuous part, besides the absolutely continuous part which has a density. This
generalized density approach allows to consider a random time τ which has positive
probability to meet a finite family of F-stopping times.

There are related works in the credit risk modelling. In Bélanger, Shreve and Wong
[1], a general framework is proposed where reduced-form models, in particular the
widely-used Cox process model, can be extended to the case where default can occur
at specific dates. In Gehmlich and Schmidt [12], the authors consider models where
the Azéma supermartingale of τ , i.e. the process (P(τ > t|Ft))t≥0 contains jumps (so
that the intensity does not exist) and develop the associated HJM credit term structures
and no-arbitrage conditions. Carr and Linetsky [3] and Chen and Filipović [4] have
studied the hybrid credit models where the default time depends on both a first-hitting
time in the structural approach and an intensity-based random time in the reduced-form
approach. The generalized density model that we propose can also be viewed as hybrid
credit model.

In this paper, we first investigate, under the generalized density hypothesis, some
classical problems in the enlargement of filtrations from a theoretical point of view.
In particular, we deduce the compensator process of the random time τ , which is
discontinuous in this case. This means that the intensity process does not necessarily
exist. We also characterize the martingale processes in the enlarged filtration G and
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obtain the G-semimartingale decomposition for an F-martingale, which shows that in
the generalized density setting, the (H’)-hypothesis of Jacod (c.f. [14]) is satisfied, that
is, any F-martingale is a G-semimartingale. The main contribution of our work is to
focus on the impact of the discontinuous part of the F-conditional law of τ and study the
impact of the critical dates on the random time.

For applications of the generalized density approach, we study the immersion prop-
erty, also called the H-hypothesis in literature, i.e., any F-martingale is a G-martingale,
which is commonly adopted in the default modelling. We give the criterion for the
immersion property to hold in this context. The immersion property is in general not
preserved under a change of probability measure. As one consequence of the characteri-
zation results of G-martingales, we study the change of probability and the associated
Radon-Nikodym derivatives. Another application consists of a model of two default times
where the occurrence of simultaneous defaults is possible. In the literature of multiple
defaults, it is often assumed that two default events do not occur at the same time. The
generalized density framework provides tools to study simultaneous defaults, which is
important for researches of extremal risks during a financial crisis.

The paper is organized in the following way. In section 2, we make precise the
key assumption of the generalized density approach and deduce some basic results.
The Section 3 is devoted to the compensator of τ and we conduct the additive and
multiplicative decompositions of the Azéma supermartingale. In Section 4, we study the
decomposition of G-semimartingales in the generalized density framework by carefully
dealing with the discontinuous part of the F-conditional distributions of τ . Section 5
concludes the paper with applications to the immersion property and a model where
double default is allowed.

2 Generalized density hypothesis

In this section, we present our key hypothesis, the generalized density hypothesis, and
some basic properties. Let (Ω,A,F,P) be a filtered probability space where F = (Ft)t≥0

is a reference filtration satisfying the usual conditions, namely the filtration F is right
continuous and F0 is a P-complete σ-algebra. We use the expressions O(F) and P(F) to
denote the optional and predictable σ-algebras associated to the filtration F respectively.
Let τ be a random time on the probability space valued in [0,+∞]. Denote by G = (Gt)t≥0

the progressive enlargement of F by τ , defined as Gt =
�

s>t

�
σ({τ ≤ u} : u ≤ s)

�
∨ Ft,

t ≥ 0. Let (τi)Ni=1 be a finite family of F-stopping times. We assume that the F-conditional
distribution of τ avoiding (τi)Ni=1 has a density with respect to a non-atomic σ-finite Borel
measure η on R+. Namely, for any t ≥ 0, there exists a positive Ft ⊗ B(R+)-measurable
random variable (ω, u) �→ αt(ω, u) such that, for any bounded Borel function h on R+,
one has

E[11Hh(τ) | Ft] =

�

R+

h(u)αt(u) η(du) P-a.s., (2.1)

where H denotes the event

{τ < ∞} ∩

N�

i=1

{τ �= τi}.

In particular, the case where the function h is constant and takes the value 1 leads to the
relation

E[11H | Ft] =

�

R+

αt(u) η(du) P-a.s.

Remark 2.1. The above assumption implies that the random time τ avoids any F-
stopping time σ such that P(σ = τi < ∞) = 0 for all i ∈ {1, · · · , N}. Namely for such
F-stopping time σ one has P(τ = σ < ∞) = 0. However, the random time τ is allowed to
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coincide with some of the stopping times in the family (τi)Ni=1 with a positive probability.
Moreover, without loss of generality, we may assume that the family (τi)Ni=1 is increasing.
In fact, if we denote by (τ (i))N

i=1 the order statistics of (τi)Ni=1, then

{τ < ∞} ∩

N�

i=1

{τ �= τi} = {τ < ∞} ∩

N�

i=1

{τ �= τ
(i)
}.

The following proposition shows that we can even assume that the family (τi)Ni=1 is
strictly increasing until reaching infinity.

Proposition 2.2. Let (τi)Ni=1 be an increasing family of F-stopping times. Then there
exists a family of F-stopping times (σi)Ni=1 which verify the following conditions:

(a) For any ω ∈ Ω and i, j ∈ {1, · · · , N}, i < j, if σi(ω) < ∞, then σi(ω) < σj(ω);
otherwise, σj(ω) = ∞.

(b) For any ω ∈ Ω, one has {σ1(ω), · · · , σN (ω),∞} = {τ1(ω), · · · , τN (ω),∞}, which implies

{τ < ∞} ∩

N�

i=1

{τ �= τi} = {τ < ∞} ∩

N�

i=1

{τ �= σi}.

Proof. The case where N = 1 is trivial. We prove the result by induction and assume
N � 2. Let τN+1 = ∞ by convention. For each k ∈ {2, · · · , N}, let

Ek = {τ1 = · · · = τk < ∞}.

Moreover, for k ∈ {2, . . . , N}, we define

τ
�
k
= 11Ec

k
τk +

N�

i=k

11Ei\Ei+1
τi+1.

Note that for each i � k, the set Ei is Fτk -measurable. Therefore

∀ t ≥ 0, {τ
�
k
≤ t} =

�
E

c

k
∩ {τk ≤ t}

�
∪

N�

i=k

�
(Ei \ Ei+1) ∩ {τi+1 ≤ t}

�
∈ Ft,

so τ
�
k
is an F-stopping time. By definition one has τ1 ≤ τ

�
2 ≤ · · · ≤ τ

�
N

≤ τ
�
N+1, where

τ
�
N+1 = ∞. One also has, for any ω,

{τ1(ω), τ2(ω) · · · , τN+1(ω)} = {τ1(ω), τ
�
2(ω), · · · , τ

�
N+1(ω)}.

Moreover, the strict inequality τ1 < τ
�
2 holds on {τ1 < ∞}. Then by the induction

hypothesis on (τ �2, · · · , τ
�
N+1), we obtain the required result.

For purpose of the dynamical study of the random time τ , we need the following
result which is analogous to [14, Lemme 1.8].

Proposition 2.3. There exists a non-negative O(F) ⊗ B(R+)-measurable function �α(·)
such that �α(θ) is a càdlàg F-martingale for any θ ∈ R+ and that

E[11Hh(τ)|Ft] =

�

R+

h(u)�αt(u) η(du) P-a.s. (2.2)

for any bounded Borel function h.
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Proof. Let (αt(·))t≥0 be a family of random functions such that the relation (2.1) holds
for any t ≥ 0. We fixe a coutable dense subset D in R+ such as the set of all non-
negative rational numbers. If s and t are two elements in D, s < t, there exists a positive
Fs ⊗ B(R+)-measurable function αt|s(·) such that

∀ θ ∈ R+, αt|s(θ) = E[αt(θ) | Fs] P-a.s.

Note that for any bounded Borel function h, one has

E[11Hh(τ)|Fs] = E

� �

R+

h(u)αt(u) η(du)

����Fs

�
=

�

R+

h(u)αt|s(u) η(du) P-a.s.

Hence there exists an η-negligeable set Bt,s such that αs(u) = αt|s(u) P-a.s. for any
u ∈ R+ \ Bt,s. Let B =

�
(s,t)∈D2,s<t

Bt,s and let �αt(·) = 11Bc(·)αt(·) for any t ∈ D. We
then obtain that �αs(u) = E[�αt(u)|Fs], P-a.s. for any u ∈ R+ and all elements s, t in D

such that s < t. Moreover, since B is still η-negligeable, for any t ∈ D,

E[11Hh(τ)|Ft] =

�

R+

h(u)�αt(u) η(du) P-a.s.. (2.3)

By [7, Theorem VI.1.2], for any θ ∈ R+, there exists a P-negligeable subset Eθ of Ω such
that, for any ω ∈ Ω \ Eθ, the following limits exist:

�αt+(ω, θ) := lim
s∈D, s↓t

�αt(ω, θ), �αt−(ω, θ) := lim
s∈D, s↑t

�αt(ω, θ).

Moreover, we define

�αt(ω, θ) =

�
�αt(ω, θ), if ω �∈ Eθ,

0, if ω ∈ Eθ.

Then �α(θ) is a càdlàg F-martingale, and therefore the random function α(·) is O(F) ⊗
B(R+)-measurable. We then deduce the proposition from (2.3).

We summarize the generalized density hypothesis as below. In what follows, we
always assume this hypothesis.

Assumption 2.4. We assume that there exists a non-atomic σ-finite Borel measure η

on R+, a finite family of F-stopping times (τi)Ni=1 such that P(τi = τj < ∞) = 0 for any
pair (i, j) of distinct indices in {1, · · · , N}, together with an O(F)⊗ B(R+)-measurable
function α(·) such that α(θ) is a càdlàg F-martingale for any θ ∈ R+ and that

E

�
11{τ<∞}h(τ)

N�

i=1

11{τ �=τi}

����Ft

�
=

�

R+

h(u)αt(u) η(du) P-a.s.

for any bounded Borel function h.

Remark 2.5. 1) The condition P(τi = τj < +∞) = 0 is not essential in Assumption 2.4.
In fact, for an arbitrary finite family of F-stopping times (τi)Ni=1, if we suppose that the
random time τ has an F-density α(·) with respect to η avoiding (τi)Ni=1, then by Remark
2.1 and Proposition 2.2, we can always obtain another family of F-stopping times (σi)Ni=1

such that P(σi = σj < +∞) = 0 for i �= j and that τ has an F-density avoiding the family
(σi)Ni=1. Moreover, the F-density of τ avoiding (σi)Ni=1 coincides with α(·).
2) For each i ∈ {1, · · · , N}, by [6, IV.81], there exists a subset Ωi ∈ Fτi such that
τ
�
i
:= τi11Ωi + (+∞)11Ωc

i
is an accesible F-stopping time and τ

��
i
:= τi11Ωc

i
+ (+∞)11Ωi is

a totally inaccessible F-stopping time. Note that τ also admits an F-density avoiding
the family (τ �

i
, τ

��
i
)N
i=1 and the F-density is still α(·). Therefore, without loss of generality,

we may assume in addition that each F-stopping time τi is either accessible or totally
inaccessible.
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Example 2.6. We present a simple example as below. Let B = (Bt)t≥0 be a standard
Brownian motion and F be the canonical Brownian filtration. Let N = (Nt)t≥0 be a
Poisson process with intensity λ > 0. We denote by τ1 = inf{t ≥ 0 : Bt = a < 0} and
ξ = inf{t ≥ 0 : Nt ≥ 1}, with the convention inf ∅ = ∞. Define a random time τ as

τ = τ1 ∧ ξ.

We compute firstly the conditional distribution of τ1. For any 0 ≤ t < θ, one has

P(τ1 > θ|Ft) = 11{τ1>t}P( min
t≤s≤θ

Bs > a
��Bt) = 11{τ1>t}erf

�
Bt − a�
2(θ − t)

�
,

where erf(x) = 2√
π

�
x

0 e
−v

2
dv is the Gauss error function. Next, for any t ∈ R+,

P(τ = τ1|Ft) = P(τ1 ≤ ξ|Ft) = 11{τ1≤t}e
−λτ1 + 11{τ1>t}

�
1

2
e
−λt

− λ

� ∞

t

e
−λuerf

�
Bt − a�
2(u− t)

�
du

�

So τ satisfies Assumption 2.4 with the generalized density

αt(θ) = λe
−λθ

�
11{θ≤t}11{τ1>θ} + 11{θ>t}11{τ1>t}erf

�
Bt − a�
2(θ − t)

��
, t ≥ 0.

For each i ∈ {1, · · · , N}, let pi be a càdlàg version of the F-martingale (E[11{τ=τi<∞}|Ft])t≥0,
which is closed by p

i

∞ = E[11{τ=τi}|F∞]. We also consider the case where τ may reach
infinity and denote by p

∞ a càdlàg version of the F-martingale (E[11{τ=∞}|Ft])t≥0, which
is closed by p

∞
∞ = E[11{τ=∞}|F∞]. Note that Assumption 2.4 implies that, for any t ≥ 0,

�

R+

αt(u) η(du) +
N�

i=1

p
i

t
+ p

∞
t

= 1 P-a.s. (2.4)

We define

Gt :=

� ∞

t

αt(θ)η(dθ) +
N�

i=1

11{τi>t}p
i

t
+ p

∞
t
. (2.5)

Note thatGt = P(τ > t|Ft), P-a.s.. The processG = (Gt)t≥0 is a càdlàg F-supermartingale
and called the Azéma supermatingale of the random time τ . Moreover, for any bounded
Borel function h, one has

E[11{τ<∞}h(τ)|Ft] =

�

R+

h(u)αt(u) η(du) +
N�

i=1

E[11{τi<∞}h(τi)p
i

τi∨t
|Ft]. (2.6)

The following result shows that any Gt-conditional expectation can be computed in a
decomposed form, which can be viewed as a direct extension to [8, Theorem 3.1].

Proposition 2.7. Let YT (·) be FT ⊗ B(R+)-measurable random variable such that
1) 11∩N

i=1{τi �=θ}YT (θ)αT (θ) is integrable for any θ ∈ R+ and
�
R+

��E[YT (θ)αT (θ)]
��η(dθ) <

+∞,
2) 11{τi<∞}YT (τi)piτi∨T

is integrable for any i ∈ {1, · · · , N}.
Then the random variable 11{τ<∞}YT (τ) is integrable, and for any t ≤ T ,

E[11{τ<∞}YT (τ)|Gt] = 11{τ>t}Ỹt + 11{τ≤t}Ŷt(τ) P-a.s. (2.7)

where

Ỹt =
11{Gt>0}

Gt

� � +∞

t

E[YT (θ)αT (θ)|Ft]η(dθ) +
N�

i=1

11{τi>t}E[11{τi<∞}YT (τi)p
i

τi∨T
|Ft]

�

(2.8)
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and

Ŷt(θ) = 11∩N
i=1{θ �=τi}

11{αt(θ)>0}

αt(θ)
E[YT (θ)αT (θ)|Ft]+

N�

i=1

11{θ=τi}
11{pi

t>0}

p
i
t

E[YT (τi)p
i

T
|Ft], θ ≤ t.

(2.9)

Proof. We may assume that YT (·) is non-negative without loss of generality so that
the following proof works without discussing the integrability (as a byproduct, we can
prove the case where YT (·) is non-negative without any integrability condition). The
integrability of YT (τ) results from the finiteness of each term in the following formulas.
The first term on the right-hand side of (2.7) is obtained as a consequence of the so-called
key lemma in the progressive enlargement of filtration ([10, Lemma 3.1]):

11{τ>t}E[11{τ<∞}YT (τ)|Gt] = 11{τ>t}
11{Gt>0}

Gt

E[11{t<τ<∞}YT (τ)|Ft].

Note that

E[11{t<τ<∞}YT (τ)|FT ] =

� +∞

t

YT (u)αT (u)η(du) +
N�

i=1

E[11{t<τ=τi<∞}YT (τi)|FT ]

=

� +∞

t

YT (u)αT (u)η(du) +
N�

i=1

E[11{t<τi<∞}YT (τi)p
i

τi∨T
|FT ]

which implies (2.8). For the second term in (2.7), we shall prove by verification. Let Zt(·)
be a bounded Ft ⊗ B(R+)-measurable random variable, one has

E[Ŷt(τ)Zt(τ)11{τ≤t}] = E
�
11H∩{τ≤t}

11{αt(τ)>0}

αt(τ)
E[YT (θ)Zt(θ)αT (θ)|Ft]θ=τ

�

+
N�

i=1

E
�
11{τ=τi≤t}

11{pi
t>0}

p
i
t

E[YT (τi)Zt(θ)p
i

T
|Ft]θ=τ

�
.

Note that

E
�
11H∩{τ≤t}

11{αt(τ)>0}

αt(τ)
E[YT (θ)Zt(θ)αT (θ)|Ft]θ=τ

�
= E

� �
t

0
E[YT (θ)Zt(θ)αT (θ)|Ft]η(dθ)

�

=

�
t

0
E[YT (θ)Zt(θ)αT (θ)]η(dθ) = E

�
11H∩{τ≤t}YT (τ)Zt(τ)

�
.

Moreover,

EP

�
11{τ=τi≤t}

11{pi
t>0}

p
i
t

E[YT (τi)Zt(θ)p
i

T
|Ft]θ=τ

�
= E[11{τi≤t}YT (τi)Zt(τi)p

i

T
]

= E[11{τ=τi≤t}YT (τ)Zt(τ)].

Therefore we obtain

E[11{τ≤t}YT (τ)|Gt] = 11{τ≤t}Ŷt(τ) P-a.s.

since Ŷt(·) is Ft ⊗ B([0, t])-measurable. The proposition is thus proved.

Remark 2.8. (1) For any integrable GT -measurable random variable Z, one can always
find a FT ⊗ B(R+)-measurable function YT (·) such that 11{τ<∞}Z = 11{τ<∞}YT (τ),
P-a.s. and verifies the integrability conditions in the previous proposition. With-
out loss of generality, we can assume that Z is non-negative. We begin with an
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arbitrary FT ⊗ B(R+)-measurable non-negative random function ZT (·) such that
11{τ<∞}Z = 11{τ<∞}ZT (τ). Then by Proposition 2.7 in the non-negative case (where
the integrability conditions are not necessary), one has

�∞
0 E[ZT (θ)αT (θ)]η(dθ) < ∞.

Therefore, the set K of θ ∈ R+ such that E[ZT (θ)αT (θ)] = +∞ is η-negligeable. By
replacing ZT (·) by zero on the set

(Ω×K) ∩
N�

i=1

{(ω, θ) ∈ Ω×R+ | τi(ω) �= θ},

we find another random function YT (·) such that YT (τ) = ZT (τ), P-a.s. Moreover,
YT (·) satisfies the integrability conditions as in the proposition.

(2) As a direct consequence, for any t ≤ T , one has

P(τ > T |Gt) = 11{τ>t}
1

Gt

� � ∞

T

αt(θ)η(dθ) +
N�

i=1

E[11{τi>T}p
i

T
|Ft] + p

∞
t

�
, P-a.s..

(2.10)

3 Compensator process

In the credit risk literature, the compensator and the intensity processes of τ play
an important role in the default event modelling. The general method for computing
the compensator is given in [18] by using the Doob-Meyer decomposition of the Azéma
supermartingale G. In [8], an explicit result is obtained under the density hypothesis
(see also [11] and [20]) where the compensator is absolutely continuous and the intensity
exists. In this section, we focus on the compensator process under the generalized
density hypothesis.

We introduce the following notations. For any i ∈ {1, · · · , N}, denote by D
i the

process (11{τi≤t})t≥0. We use the expression Λi to denote the F-compensator process
of Di, that is, Λi is an increasing F-predictable process such that M i := D

i − Λi is an
F-martingale with M

i

0 = 0. Note that, if τi is a predictable F-stopping time, then Λi = D
i

and M
i = 0. The following result generalizes [8, Proposition 4.1 (1)]. Here the Azéma

supermartingale G is a process with jumps and needs to be treated with care.

Proposition 3.1. The Doob-Meyer decomposition of the Azéma’s supermartingale G is
given by Gt = G0 +Mt −At, where A is an F-predictable increasing process given by

At =

�
t

0
αθ(θ)η(dθ) +

N�

i=1

�

]0,t]
p
i

s−dΛ
i

s
+

N�

i=1

�M
i
, p

i
�t, (3.1)

Proof. For any t ≥ 0, let

Ct =

�
t

0
αθ(θ)η(dθ).

The process C is F-adapted and increasing. It is moreover continuous since η is assumed
to be non-atomic. Note that by (2.5),

Gt = E

� � ∞

t

αθ(θ)η(dθ)

����Ft

�
+

N�

i=1

11{τi>t}p
i

t
+ p

∞
t
.

The process

Ct +

� ∞

t

αt(θ)η(dθ) = E

� � ∞

0
αθ(θ)η(dθ)

����Ft

�
, t ≥ 0
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is a square integrable F-martingale since

E

��� ∞

0
αθ(θ)η(dθ)

�2�
= 2E

� � ∞

0
η(dθ)αθ(θ)

� ∞

θ

η(du)αu(u)

�

= 2E

� � ∞

0
αθ(θ)E[11A∩{τ>θ}|Fθ]η(dθ)

�
≤ 2.

Moreover, one has

11{τi>t}p
i

t
= 11{τi>0}p

i

0 +

�

]0,t]
11{τi≥s}dp

i

s
−

�

]0,t]
p
i

s−dD
i

s
− [Di

, p
i]t,

= 11{τi>0}p
i

0 +

�

]0,t]
11{τi≥s}dp

i

s
−

�

]0,t]
p
i

s−dM
i

s
−

�

]0,t]
p
i

s−dΛ
i

s
− [Di

, p
i]t,

where
[Di

, p
i]t =

�

0<s≤t

∆D
i

s
∆p

i

s
= 11{τi≤t}∆p

i

τi
.

One can also rewrite [Di
, p

i] as

[Di
, p

i] = [Λi
, p

i] + [M i
, p

i] = [Λi
, p

i] + ([M i
, p

i]− �M
i
, p

i
�) + �M

i
, p

i
�.

Note that [Λi
, p

i] is an F-martingale since Λi is F-predictible and p
i is an F-martingale (see

[7, VIII.19]). Moreover �M i
, p

i� is an F-predictable process such that [M i
, p

i]− �M i
, p

i�

is an F-martingale. Therefore we obtain that

At = Ct +

�

]0,t]
p
i

s−dΛ
i

s
+ �M

i
, p

i
�t, t ≥ 0

is a predictable process, and G+A is an F-martingale.

In the following, we denote by ΛF the process

ΛF
t
:=

�

]0,t]

11{Gs−>0}

Gs−
dAs, t ≥ 0 (3.2)

which is an F-predictable process. It is well known that the G-compensator of τ is
ΛG = (ΛF

τ∧t
)t≥0 (c.f. [18, Proposition 2]). We observe from Proposition 3.1 that the

compensator ΛF is in general a discontinuous process and may have jump at the stopping
times (τi)Ni=1, so that the intensity does not exist in this case. A similar phenomenon
appears in the generalized Cox process model proposed in [1] where the default can occur
at specific dates. A general model where the Azéma supermartingale is discontinuous
has also been studied in [12].

We can treat general F-stopping times (τi)Ni=1, (see Remark 2.5). In case they are
predictable F-stopping times, Λi

t
= 11{τi≤t} andM

i

t
= 0, so the last term on the right-hand

side of (3.1) vanishes and we obtain

At =

�
t

0
αθ(θ)η(dθ) +

N�

i=1

11{τi≤t}p
i

τi−

In case where {τi}
N

i=1 are totally inaccessible F-stopping times, then τ is a totally
inaccessible G-stopping time. In this case, the compensator process of τ is continuous.
A similar result can be found in Coculescu [5].

Proposition 3.2. If (τi)Ni=1 are totally inaccessible F-stopping times, then τ is a totally
inaccessible G-stopping time.
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Proof. Since τi is totally inaccessible, the F-compensator process Λi is continuous.
Moreover, �M i

, p
i� is the compensator of the process [Di

, p
i] = (11{τi≤t}∆p

i

τi
)t≥0 and

hence is continuous (see [7, VI.78] and the second part of its proof for details). Therefore
the process A in the Doob-Meyer decomposition of G is continuous since η is non-
atomic. This implies that the F-compensator ΛF of τ is continous. Thus the process
(11{τ>t} + ΛF

τ∧t
)t≥0 is a uniformly integrable G-martingale, which is continuous outside

the graphe of τ , and has jump size 1 at τ . Still by [7, VI.78], τ is a totally inaccessible
G-stopping time.

There exists a multiplicative decomposition of the Azéma supermartingale. By [13,
Corollary 6.35], G exp(ΛF) is an F-martingale, which is the Doléans-Dade exponential of
the F-martingale M̃ such that

dM̃t =
11{Gt−>0}

Gt−
dMt.

In the following, we give the explicit multiplicative decomposition under the generalized
density hypothesis as a general case of [8, Proposition 4.1 (2)].

Proposition 3.3. Let ξ := inf{t > 0 : Gt = 0} and denote by ΛF,c the continuous part of
ΛF. The multiplicative decomposition of the Azéma supermartingale G is given by

Gt = Lte
−ΛF,ct

�

0<u≤t

(1−∆ΛF
u
), t ≥ 0, (3.3)

where L is an F-martingale solution of the stochastic differential equation

Lt = 1 +

�

]0,t∧ξ]

Ls−
(1−∆ΛF

s
)Gs−

dMs, t ≥ 0. (3.4)

Proof. On the one hand, for any t ≥ 0, if there exists u ∈]0, t] such that ∆ΛF
u
= 1, making

the right-hand side of (3.3) vanish, then we have p(11[[0,τ [[)u = 0, which implies that
Gu = 0. It is a classic result that G is a non-negative supermartingale which sticks at 0
(c.f. [21, page 379]), then Gt = 0. On the other hand, if ∆ΛF �= 1, we denote by M

F the
F-martingale defined as

dM
F
t
=

11{Gt−>0}

Gt−
dMt.

Let S = M
F − ΛF. Then one has Gt = 1 +

�
]0,t] Gu−dSu for all t ∈ R+. By [13, Corol-

laire 6.35], G = E(S) = LE(−ΛF), where L = E(M̃F) such that

dM̃
F
t
=

11{0<t≤ξ}

1−∆ΛF
t

dM
F
t

(here we use the fact that ξ = inf{t > 0 : ∆St = −1} and −∆ΛF �= −1 on ]]0, ξ]]). Then, L
is the solution of

Lt = 1 +

�

]0,t]
Ls−dM̃

F
s
, t ≥ 0.

4 Martingales and semimartingales in G

In this section, we are interested in the G-martingales. We first characterize the G-
martingales by using F-martingale conditions, as done in [8, Proposition 5.6]. However,
under the generalized density hypothesis, we shall distinguish necessary and sufficient
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conditions although they have similar forms at the first sight. In fact, the decomposition
of a G-adapted process is not unique, and the martingale property can not hold true for
all modifications. This makes the necessary and sufficient conditions subtly different.

Proposition 4.1. Let Y G be a G-adapted process, which is written in the decomposed
form Y

G
t

= 11{τ>t}Yt + 11{τ≤t}Yt(τ), t ≥ 0, P-a.s. where Y is an F-adapted process and
Y (·) is an F⊗ B(R+)-adapted process. Then Y

G is a G-(local) martingale if the following
conditions are verified:

(a) 11∩N
i=1{τi �=θ}Y (θ)α(θ) is an F-(local) martingale on [θ,∞[ for any θ ∈ R+;

(b) Y (τi)pi is an F-(local) martingale on [[τi,∞[[ for any i ∈ {1, · · · , N};

(c) the process YtGt +
�
t

0 Yu(u)αu(u)η(du) +
�

N

i=1 11{τi≤t}Yτi(τi)p
i

τi
, t ≥ 0 is an F-(local)

martingale.

Proof. We first treat the martingale case. By Proposition 2.7, the conditional expectation
E[Y G

T
|Gt] can be written as the sum of

11{τ>t}
11{Gt>0}

Gt

E
�
11{τ>T}YT + 11{t<τ≤T}YT (τ)

���Ft

�
= 11{τ>t}

11{Gt>0}

Gt

�
E [YTGT |Ft]

+

�
T

t

E [YT (u)αT (u)|Ft] η(du) +
N�

i=1

E
�
11{t<τi≤T}YT (τi)p

i

T
|Ft

��

and

11{τ≤t}

�
11∩N

i=1{τ �=τi}
11{αt(τ)>0}

αt(τ)
E [YT (θ)αT (θ)|Ft]θ=τ

+
N�

i=1

11{τ=τi}
11{pi

t>0}

p
i
t

E
�
YT (τi)p

i

T
|Ft

�
�
.

Hence, E[Y G
T
|Gt]− Y

G
t

equals the sum of the following terms

11{τ>t}
11{Gt>0}

Gt

�
E [YTGT − YtGt|Ft] +

�
T

t

E [YT (u)αT (u)|Ft] η(du)

+
N�

i=1

E
�
11{t<τi≤T}YT (τi)p

i

T
|Ft

�� (4.1)

and

11{τ≤t}

�
− Yt(τ) + 11∩N

i=1{τ �=τi}
11{αt(τ)>0}

αt(τ)
E [YT (θ)αT (θ)|Ft]θ=τ

+
N�

i=1

11{τ=τi}
11{pi

t>0}

p
i
t

E
�
YT (τi)p

i

T
|Ft

��
.

(4.2)

Since the measure η is non-atomic, one has

�
T

t

E [YT (u)αT (u)|Ft] η(du) = E

��
T

t

11∩N
i=1{τi �=u}YT (u)αT (u)η(du)

����Ft

�
.

By the condition (a), it is equal to

E

��
T

t

11∩N
i=1{τi �=u}Yu(u)αu(u)η(du)

����Ft

�
= E

��
T

t

Yu(u)αu(u)η(du)

����Ft

�
,
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where we use again the fact that η is non-atomic. Therefore, by the condition (b), one
can rewrite the term (4.1) as

11{τ>t}
11{Gt>0}

Gt

�
E [YTGT − YtGt|Ft] + E

��
T

t

Yu(u)αu(u)η(du)
���Ft

�

+
N�

i=1

E
�
11{t<τi≤T}Yτi(τi)p

i

τi
|Ft

��
,

(4.3)

which vanishes thanks to the condition (c). Moreover, by condition (a) and (b), we can
rewrite (4.2) as

11{τ≤t}

�
−Yt(τ) + 11∩N

i=1{τ �=τi}
11{αt(τ)>0}

αt(τ)
Yt(τ)αt(τ) +

N�

i=1

11{τ=τi}
11{pi

t>0}

p
i
t

Yt(τi)p
i

t

�
,

which also vanishes.
In the following, we treat the local martingale case. Assume that the processes

in (a)-(c) are local F-martingales, then there exists a common sequence of F-stopping
times which localizes the processes (a)-(c) simultaneously. Thus it remains to prove the
following claim: assume that σ is an F-stopping time such that

(1) 11∩n
i=1{τi �=θ}11{σ>0}Y

σ(θ)ασ(θ) is an F-martingale on [θ,∞[ for θ ∈ R+,

(2) 11{σ>0}Y
σ(τi)pi,σ is an F-martingale on [[τi,∞[[,

(3) the process 11{σ>0}

�
Y

σ

t
G

σ

t
+

�
σ∧t

0 Yu(u)αu(u)η(du) +
�

N

i=1 11{τi≤σ∧t}Yτi(τi)p
i

τi

�
, t ≥ 0

is an F-martingale,

then the process 11{σ>0}Y
G,σ is a G-martingale.

Note that the processes α(θ) and p
i are all F-martingales for θ ≥ 0, i ∈ {1, . . . , N}.

Therefore, the conditions (1) and (2) imply the corresponding conditions in replacing
α
σ(θ) and p

i,σ by α(θ) and p
i respectively. We then deduce the following conditions

(1’) 11∩N
i=1{τi �=θ}11{σ>0}

�
11{σ<θ}Y

σ+11{σ≥θ}Y
σ(θ)

�
α(θ) is an F-martingale on [θ,∞[ for any

θ ≥ 0,

(2’) 11{σ>0}
�
11{τi>σ}Y

σ+11{τi≤σ}Y
σ(τi)

�
p
i is an F-martingale on [[τi,∞[[ for i ∈ {1, · · · , N},

(3’) 11{σ>0}

�
Y

σ

t
Gt+

�
t

0 (11{σ<u}Y
σ

u
+11{σ≥u}Y

σ

u
(u))αu(u)η(du)+

�
N

i=1 11{τi≤t}(11{τi>σ}Y
σ

τi
+

11{τi≤σ}Y
σ

τi
(τi))piτi

�
, t ≥ 0 is an F-martingale.

One has 11{σ<θ}Y
σ

t
= 11{σ<θ}Yσ on [θ,∞[ and hence

�
11{σ<θ}Y

σ

t
+ 11{σ≥θ}Y

σ

t
(θ)

�
αt(θ)− Y

σ

t
(θ)ασ

t
(θ)

= 11{σ<θ}
�
Yσαt(θ)− Yσ(θ)ασ(θ)

�
+ 11{σ≥θ}Yt∧σ(θ)

�
αt(θ)− αt∧σ(θ)

�

= 11{σ<θ}
�
Yσαt(θ)− Yσ(θ)ασ(θ)

�
+ 11{σ≥θ}Yσ(θ)

�
αt(θ)− αt∧σ(θ)

�
, t ≥ θ

is an F-martingale, which implies that (1) leads to (1’). Similarly, one has 11{τi>σ}Y
σ

t
=

11{τi>σ}Yσ on [[τi,∞[[ and hence (2) leads to (2’). Finally, by (2.5), we obtain that

Gt +

�
t

0
αu(u)η(du) +

N�

i=1

11{τi≤t}p
i

τi
, t ≥ 0
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is an F-martingale and hence

11{σ>0}Yσ

�
Gt −G

σ

t
+

�
t

σ∧t

αu(u)η(du) +
N�

i=1

11{σ∧t<τi≤t}p
i

τi

�
, t ≥ 0

is also an F-martingale. Hence the condition (3) leads to (3’). By the martingale case of
the proposition proved above, applied to the process

11{σ>0}Y
G,σ

t
= 11{τ>t}11{σ>0}Y

σ

t
+ 11{τ≤t}11{σ>0}

�
11{τ>σ}Y

σ

t
+ 11{τ≤σ}Y

σ

t
(τ)

�
,

we obtain that 11{σ>0}Y
G,σ is a G-martingale. In fact, if we replace in the conditions

(a)–(c) the process Y by 11{σ>0}Y
σ, and Yt(θ) by 11{σ>0}

�
11{θ>σ}Y

σ

t
+ 11{θ≤σ}Y

σ

t
(θ)

�
, then

the conditions (a)–(c) become (1’)–(3’). The proposition is thus proved.

In view of Proposition 4.1, it is natural to examine whether the converse is true.
However, given a G-adapted process Y G, the decomposition Y

G
t

= 11{τ>t}Yt+11{τ≤t}Yt(τ),
P-a.s. is not unique. For example, if one modifies arbitrarily the value of Y (θ) on�

n

i=1{τi �= θ} for θ in an η-negligiable set, the decomposition equality remains valid.
However, the F-martingale property of 11∩N

i=1{τi �=θ}Y (θ)α(θ) cannot hold for all such

modifications. In the following, we prove that, if Y G is a G-martingale, then one can
find at least one decomposition of Y G such that Y and Y (.) satisfy the F-martingale
conditions in Proposition 4.1.

Proposition 4.2. Let Y G be a G-martingale. There exist a càdlàg F-adapted process Y
and an O(F)⊗ B(R+)-measurable processes Y (·) which verify the following conditions :

(a) 11∩N
i=1{τi �=θ}Y (θ)α(θ) is an F-martingale on [θ,∞[;

(b) Y (τi)pi is an F-martingale on [[τi,∞[[ for any i ∈ {1, · · · , N};

(c) the process YtGt+
�
t

0 Yu(u)αu(u)η(du)+
�

N

i=1 11{τi≤t}Yτi(τi)p
i

τi
, t ≥ 0 is an F-martingale;

and such that, for any t ≥ 0 one has Y G
t

= 11{τ>t}Yt + 11{τ≤t}Yt(τ), t ≥ 0, P-a.s.

Proof. The process Y G can be written in the following decomposition form

Y
G
t

= 11{τ>t}Ỹt + 11{τ≤t}Ŷt(τ), (4.4)

where Ỹ and Ŷ (·) are respectively F-adpated and F⊗ B(R+)-adapted processes. Since
Y
G is a G-martingale, for i ∈ {1, · · · , N} and 0 ≤ t ≤ T , one has

E[Y G
T
11{τ=τi≤t}|Ft] = E[Y

G
t
11{τ=τi≤t}|Ft],

which implies
11{τi≤t}E[ŶT (τi)p

i

T
|Ft] = 11{τi≤t}Ŷt(τi)p

i

t
.

This equality shows that Ŷ (τi)pi is an F-martingale on [[τi,∞[[. We take a càdlàg version
of this martingale and replace Ŷ (τi) on [[τi,∞[[ by the càdlàg version of this martingale
multiplied by 11{pi>0}(p

i)−1. This gives an O(F)⊗ B(R+)-measurable version of Ŷ (·) and
the equality (4.4) remains true P-almost surely.

Similarly, for 0 ≤ t ≤ T , one has

E[Y G
T
11{τ≤t}11∩N

i=1{τ �=τi}|Ft] = E[Y
G
t
11{τ≤t}11∩N

i=1{τ �=τi}|Ft],

which implies �
t

0
E[ŶT (θ)αT (θ)|Ft] η(dθ) =

�
t

0
Ŷt(θ)αt(θ)η(dθ). (4.5)
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Let D be a countable dense subset of R+. For any θ ∈ R+ and all s, t ∈ D such that
θ ≤ s ≤ t, let

Ŷt|s(θ) =
11{αs(θ)>0}

αs(θ)
E[Ŷt(θ)αt(θ)|Fs].

The equality (4.5) shows that there exists an η-negligeable Borel subset B of R+ such
that Ŷt|s(θ)αs(θ) = E[Ŷt(θ)αt(θ)|Fs] provided that θ �∈ B. By the same arguments as in
the proof of Proposition 2.3, we obtain a càdlàg F⊗B(R+)-adapted process Y (·) verifying
the conditions (a) and (b), and such that Y G

t
= 11{τ>t}Ỹt + 11{τ≤t}Yt(τ), P-a.s..

For the last condition (c), for any t ≥ 0, let

Y
F
t

= E[Y G
t
|Ft] = ỸtGt +

�
t

0
Yt(θ)αt(θ) η(dθ) +

N�

i=1

11{τi≤t}Yt(τi)p
i

t
.

The process Y F is an F-martingale. Since Y (τi)pi is an F-martingale on [[τi,+∞[[ for all
i = 1, · · · , N , we obtain that the process

ỸtGt +

�
t

0
Yt(θ)αt(θ) η(dθ) +

N�

i=1

11{τi≤t}Yτi(τi)p
i

τi
, t ≥ 0

is also an F-martingale. Let Z be a càdlàg version of this F-martingale and let

Yt =
11{Gt>0}

Gt

�
Zt −

�
t

0
Yt(θ)αt(θ) η(dθ)−

N�

i=1

11{τi≤t}Yτi(τi)p
i

τi

�
, t ≥ 0

which is a càdlàg version of the process Ỹ . The equality Y
G
t

= 11{τ>t}Yt + 11{τ≤t}Yt(τ),
P-a.s. still holds. The result is thus proved.

In the theory of enlargement of filtrations, it is a classical problem to study whether
an F-martingale remains a G-semimartingale. The standard hypothesis under which
this assertion holds true is the density hypothesis (c.f. [14, Section 2] in the initial
enlargement and [8, Proposition 5.9], [15, Theorem 3.1] in the progress enlargement of
filtrations). We now give an affirmative answer to this question under the generalized
density hypothesis, which provides a weaker condition.

Proposition 4.3. Any F-local martingale U
F is a G-semimartingale which has the fol-

lowing decomposition:

U
F
t
= U

G
t
+

�

]0,t∧τ ]

d�UF, M̄�s

Gs−

+ 11∩N
i=1{τ �=τi}

�

]τ,t∨τ ]

d�UF, α(u)�s
αs−(u)

���
u=τ

+
N�

i=1

11{τ=τi}

�

]τ,t∨τ ]

d�UF, pi�s

p
i
s−

, (4.6)

where U
G is a G-local martingale and M̄ is the F-martingale defined as

M̄t = E

�� ∞

0
αu(u)η(du)

���Ft

�
+

N�

i=1

p
i

t∧τi
+ p

∞
t
, t ≥ 0. (4.7)

Proof. Let

Āt =

�
t

0
αu(u)η(u) +

N�

i=1

11{τi≤t}p
i

τi
.

One has G = M̄ − Ā. We denote by

Kt =

�

]0,t]

d�UF, M̄�s

Gs−
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and for θ ≤ t,

Kt(θ) = 11∩N
i=1{θ �=τi}

�

]θ,t]

d�UF, α(θ)�s
αs−(θ)

+
N�

i=1

11{θ=τi}

�

]θ,t]

d�UF, pi�s

p
i
s−

We define the process UG as

U
G
t

= 11{τ>t}
�
U
F
t
−Kt

�
+ 11{τ≤t}

�
U
F
t
−Kτ −Kt(τ)

�
= 11{τ>t}Ũt + 11{τ≤t}Ût(τ),

where Ũt = U
F
t
−Kt and Ût(θ) = U

F
t
−Kθ −Kt(θ). We check firstly that Ũ and Û(·) verify

the condition (c) in Proposition 4.1. Let Z = (Zt)t≥0 be a process defined as

Zt = ŨtGt +

�
t

0
Ûu(u)dĀu, t ≥ 0.

Then

dZt = d(ŨtGt) + Ût(t)dĀt = d(UF
t
Gt)− d(KtGt) + (UF

t
−Kt)dĀt

= U
F
t−dGt +Gt−dU

F
t
+ d[UF, G]t −KtdGt −Gt−dKt + U

F
t−dĀt −KtdĀt + d[UF, Ā]t

= (UF
t− −Kt)dM̄t +Gt−dU

F
t
+ d[UF, M̄ ]t − d�U

F
, M̄�t.

Therefore Z is an F-local martingale.
We check now the conditions (a) and (b) in Proposition 4.1. On the set {θ �= τ1}∩ . . .∩

{θ �= τN} ∩ {αt(θ) > 0}, one has

d

�
Ût(θ)αt(θ)

�
=

�
U
F
t− −Kθ −Kt(θ)

�
dαt(θ)+αt−(θ)dU

F
t
+d[UF, α(θ)]t−d�U

F
, α(θ)�t, θ ≤ t

and on the set {τi ≤ t} ∩ {pi
t
> 0} for all i = 1, . . . , N ,

d

�
Ût(τi)p

i

t

�
=

�
U
F
t− −Kτi −Kt(τi)

�
dp

i

t
+ p

i

t−dU
F
t
+ d[UF, pi]t − d�U

F
, p

i
�t.

Therefore the process 11∩N
i=1{θ �=τi}Û(θ)α(θ) is an F-local martingale on [θ,∞[, and the

process Û(τi)pi is an F-local martingale on [[τi,∞[[ for all i = 1, . . . , N . By Proposition
4.1, we obtain that UG is a G-local martingale.

Remark 4.4. We note that the decomposition G = M̄ − Ā in the proof of the above
proposition is different from the Doob-Meyer decomposition of G since Ā is an F-optional
process. However, if F is quasi left continuous, this decomposition coincides with the
Doob-Meyer decomposition. A general discussion concerning the optional decomposition
can be found in Song [22].

5 Applications

In this section, as applications of previous results in the generalized density approach,
we first discuss about the immersion property which is widely adopted in the credit risk
models and then study a two-name model with simultaneous defaults.

5.1 Immersion property

The pair of filtrations (F,G) is said to verify the immersion property if any F-
martingale is a G-martingale. In the literature of default modelling, the immersion
property is often supposed for the pricing of credit derivatives at times before default.
We give below a criterion under the generalized density hypothesis for the immersion
property to hold true.
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Proposition 5.1. The immersion property holds for (F,G) under the following condi-
tions:

(a) αt(θ) = αθ(θ) for 0 ≤ θ ≤ t on
�

N

i=1{τi �= θ};

(b) p
i

t
= p

i

τi∧t
for any i ∈ {1, · · · , N}.

Proof. Let Y be an F-martingale. It can be considered as a G-adapted process and
admits the following decomposition Yt = 11{τ>t}Yt + 11{τ≤t}Yt, t ≥ 0. The condition (a)
implies that the process 11∩n

i=1{τi �=θ}α(θ)Y is an F-martingale on [θ,∞[ for any θ > 0. The
condition (b) implies that Y p

i is an F-martingale on [[τi,∞]] for any i ∈ {1, · · · , N}. For
the last condition in Proposition 4.1, we have

YtGt +

�
t

0
Yuαu(u)η(du) +

N�

i=1

11{τi≤t}Yτip
i

τi

= Yt

� ∞

0
αt(u)η(du) +

N�

i=1

Yτi∧tp
i

τi∧t
+ Ytp

∞
t

= Yt

�� ∞

0
αt(u)η(du) +

N�

i=1

p
i

t
+ p

∞
t

�
+

N�

i=1

(Yτi∧t − Yt)p
i

τi∧t

= Yt +
N�

i=1

(Yτi∧t − Yt)p
i

τi∧t

where the second equality comes from the fact pi
τi∧t

= p
i

t
and the third equality comes

from (2.4). Since Y is an F-martingale,
�
(Yτi∧t − Yt)piτi∧t

�
t≥0

is an F-martingale for any
i = 1, · · · , N . Hence we obtain the result.

Conversely, if the immersion property holds, then

(a) we can choose suitable conditional density process α(·) such that αt(θ) = αθ(θ) for
0 ≤ θ ≤ t on

�
n

i=1{τi �= θ}

(b) for any i ∈ {1, . . . , N}, the F-martingale p
i is stopped at τi.

However, the condition (a) may not hold in general since we are allowed to change the
value of αt(θ) for θ in a η-negligible set without changing the F-conditional law of τ .

The immersion property is not necessarily preserved under a change of probability
measure. In the following, we study the change of probability measures based on the
previous results of G-martingale characterization, similar as in [8, Section 6.1]. Firstly,
we deduce relevant processes under a change of probability measure, as a generalization
of [8, Theorem 6.1]. Secondly, we show that to begin from an arbitrary probability
measure (where the immersion is not necessarily satisfied), we can always find a change
of probability which is invariant on F, and the immersion property holds under the new
probability measure.

Proposition 5.2. Let Y G be a positive G-martingale of expectation 1, which is written
in the decomposed form as Y G

t
= 11{τ>t}Yt + 11{τ≤t}Yt(τ) where Y and Y (·) are positive

processes which are respectively F-adapted and F ⊗ B(R+)-adapted. Let Q be the
probability measure such that dQ/dP = Y

G
t

on Gt for any t ≥ 0. Then the random time
τ satisfies Assumption 2.4 under the probability Q, and the (F,Q)-conditional density
avoiding (τi)Ni=1 and the (F,Q)-conditional probabilty of τ = τi < ∞ can be written in the
following form

α
Q
t
(θ) = 11{θ≤t}

Yt(θ)

Y
F
t

αt(θ) + 11{θ>t}
E[Yθ(θ)αθ(θ)|Ft]

Y
F
t

, p
i,Q
t

=
Yt(τi)pit
Y
F
t

(5.1)
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where

Y
F
t

:= E[Y G
t
|Ft] = GtYt +

�
t

0
Yt(θ)αt(θ) η(dθ) +

N�

i=1

11{τi≤t}Yt(τi)p
i

t
.

Proof. Let Y G be as in the statement of the proposition. Let h be a bounded Borel
function, then

EQ[11{τ<∞}h(τ)|Ft] = lim
n→+∞

EQ[11{τ≤n}h(τ)|Ft] = lim
n→+∞

E[11{τ≤n}Y
G
τ∨t

h(τ)|Ft]

E[Y G
t
|Ft]

(5.2)

where we use the optional stopping theorem of Doob for the second equality. Note that

E[Y G
t
|Ft] = GtYt +

�
t

0
Yt(θ)αt(θ) η(dθ) +

N�

i=1

11{τi≤t}Yt(τi)p
i

t

and for any n ∈ N,

E[11{τ≤n}Y
G
τ∨t

h(τ)|Ft] =

�
n

0

�
11{θ≤t}Yt(θ)αt(θ) + 11{θ>t}E[Yθ(θ)αθ(θ)|Ft]

�
h(θ) η(dθ)

+
N�

i=1

�
11{τi≤t∧n}Yt(τi)p

i

t
h(τi) + 11{τi>t}E[Yτi(τi)p

i

τi
h(τi)11{τi≤n}|Ft]

�
.

Hence

lim
n→+∞

E[11{τ≤n}Y
G
τ∨t

h(τ)|Ft] =

� ∞

0

�
11{θ≤t}Yt(θ)αt(θ) + 11{θ>t}E[Yθ(θ)αθ(θ)|Ft]

�
h(θ) η(dθ)

+
N�

i=1

�
11{τi≤t}Yt(τi)p

i

t
h(τi) + 11{τi>t}E[Yτi(τi)p

i

τi
h(τi)11{τi<∞}|Ft]

�
,

which implies the required result together with (5.2).

Proposition 5.3. We assume that the processes α(·) and p
i, i ∈ {1, · · · , N} are strictly

positive. Let Y and Y (·) be respectively F-adapted and F ⊗ B(R+)-adapted processes
such that

Yt =
1

Gt

�
1−

�
t

0
αθ(θ) η(dθ)−

N�

i=1

11{τi≤t}p
i

τi

�
, (5.3)

Yt(θ) = 11∩N
i=1{τi �=θ}

αθ(θ)

αt(θ)
+

N�

i=1

11{τi=θ}
p
i

θ

p
i
t

, 0 ≤ θ ≤ t. (5.4)

Then the G-adapted process Y G defined by Y G
t

= 11{τ>t}Yt+11{τ≤t}Yt(τ) is a non-negative
G-martingale with expectation 1. Moreover, if we denote by Q the probability measure
such that dQ/dP = Y

G
t

on Gt, then the restriction of Q on F∞ coincides with P and
(F,G) verifies the immersion property under the probability Q. Moreover, one has
α
Q
θ
(θ) = αθ(θ) on

�
N

i=1{τi �= θ} and p
i,Q
τi

= p
i

τi
.

Proof. The assertion that Y G is a G-martingale results from Proposition 4.1. Moreover,
one has

E[Y G
t
|Ft] = GtYt +

�
t

0
Yt(θ)αt(θ)η(dθ) +

N�

i=1

11{τi≤t}Yt(τi)p
i

t
= 1.

Therefore the expectation of Y G
t

is 1, and the restriction of Q to F∞ coincides with P. Il
remains to verify that (F,G) satisfies to the immersion property under the probability
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Q and the invariance of the values of αθ(θ) and p
i

τi
. By the previous proposition, on�

n

i=1{τi �= θ} one has

α
Q
t
(θ) = 11{θ≤t}Yt(θ)αt(θ) + 11{θ>t}E[Yθ(θ)αθ(θ)|Ft] = 11{θ≤t}αθ(θ) + 11{θ>t}E[αθ(θ)|Ft]

and
p
i,Q
t

= Yt(τi)p
i

t
= p

i

τi
on {τi ≤ t}.

In particular, one has α
Q
θ
(θ) = αθ(θ) on

�
N

i=1{τi �= θ} and p
i,Q
τi

= p
i

τi
. Moreover, by

Proposition 5.1 we obtain that (F,G) satisfies to the immersion property under the
probability Q. The result is thus proved.

5.2 A two-name model with simultaneous default

The density approach has been adopted to study multiple random times in [9], [16]
and [19]. In the classical literature of multi-default modelling, one often supposes
that there is no simultaneous defaults, notably in the classical intensity and density
models. For example, if we suppose that the conditional joint F-density exists for
two default times, then the probability that the two defaults coincide equals to zero
(see [9]). However, during the financial crisis where the risk of contagious defaults
is high, it is important to study simultaneous defaults whose occurrence is rare but
will have significant impact on financial market. The generalized density approach
provides mathematical tools to study simultaneous defaults. The idea consists of using a
recurrence method.

In the following, we consider two random times σ1 and σ2 defined on the probability
space (Ω,A,F,P) and we assume that

P(σ1 ∈ dθ1, σ2 ∈ dθ2|Ft) = βt(θ1, θ2)dθ1dθ2 +∆∗(qt(θ)dθ), (5.5)

where β(·, ·) and q(·) are respectively positive càdlàg F⊗ B(R2
+) and F⊗ B(R+)-adapted

processes, and ∆ : R+ → R2
+ denotes the diagonal embedding which sends x ∈ R+ to

(x, x) ∈ R2, and ∆∗(qt(θ)dθ) is the direct image of the Borel measure qt(θ)dθ by the map
∆. Namely for any bounded Borel function h(·) on R2

+, one has

E[h(σ1, σ2)|Ft] =

�

R2
+

βt(θ1, θ2)h(θ1, θ2)dθ1dθ2 +

�

R+

qt(θ)h(θ, θ)dθ.

In particular, the F-conditional probability of simultaneous default is given by

P[σ1 = σ2|Ft] =

�

R+

qt(θ) dθ.

We shall apply previous results to this two-default model. Let F1 be the progressive
enlargement of F by the random time σ1. Then σ1 is an F1-stopping time. The filtration
F1 will play the role of the reference filtration in the previous sections.

Proposition 5.4. The random time σ2 satisfies the generalized density hypothesis with
respect to the filtration F1. The F1-conditional density of σ2 avoiding σ1 is given by

α
2|1
t

(θ) = 11{σ1>t}

�∞
t

βt(s, θ)ds

G
1
t

+ 11{σ1≤t}
βt(σ1, θ)

α
1
t
(σ1)

, t ≥ 0 (5.6)

where α
1
t
(·) is the Ft-density of σ1 and G

1
t
= P = (σ1 > t|Ft). In addition, the F1-

conditional probability of simultaneous default is given by

pt := P(σ2 = σ1|F
1
t
) = 11{σ1>t}

�∞
t

qt(θ)dθ

G
1
t

+ 11{σ1≤t}
qt(σ1)

α
1
t
(σ1)

. (5.7)
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Proof. The hypothesis (5.5) implies that

P(σ1 ∈ dθ|Ft) =

��

R+

βt(θ, θ2)dθ2 + qt(θ)

�
dθ

So the random time σ1 admits F-conditional density which is given by

α
1
t
(θ) =

�

R+

βt(θ, θ2)dθ2 + qt(θ). (5.8)

Let G1
t
= P(σ1 > t|Ft) =

�∞
t

α
1
t
(θ)dθ. Direct computations yields

P(σ2 = σ1|F
1
t
) = 11{σ1>t}

�∞
t

qt(θ)dθ

G
1
t

+ 11{σ1≤t}
qt(σ1)

α
1
t
(σ1)

. (5.9)

In fact, the term on the set {σ1 > t} is classical. For the term on the set {σ1 ≤ t} in (5.9),
consider a bounded test function Yt(·) which is Ft ⊗ B(R+)-measurable, by (5.5) one has

E[11{σ1=σ2≤t}Yt(σ1)] =

�
t

0
E[qt(θ)Yt(θ)]dθ.

Since

E
�
11{σ1≤t}

qt(σ1)

α
1
t
(σ1)

Yt(σ1)
�
=

�
t

0
E
�
qt(θ)

α
1
t
(θ)

Yt(θ)α
1
t
(θ)

�
dθ =

�
t

0
E[qt(θ)Yt(θ)]dθ,

then

11{σ1≤t}P(σ2 = σ1|F
1
t
) = 11{σ1≤t}

qt(σ1)

α
1
t
(σ1)

.

In a similar way, we obtain (5.6).

Remark 5.5. By the symmetry between σ1 and σ2, the generalized density hypothesis is
also satisfied by σ1 with respect to the filtration F2.

We are interested in the compensator process of σ2 in the filtration G = (Gt)t≥0 which
is the progressive enlargement of F1 by the random time σ2. The random time σ1 admits
F-density, so σ1 is a totally inaccessible F1-stopping time. By Proposition 3.2, we know
that σ2 is a totally inaccessible G-stopping time and the intensity exists.

Proposition 5.6. The random time σ2 has a G-intensity given by

λ
2,G
t

= 11{σ2>t}

�
11{σ1>t}

�∞
t

βt(θ1, t)dθ1 + qt(t)�∞
t

�∞
t

βt(θ1, θ2)dθ1dθ2 +
�∞
t

qt(θ)dθ
+ 11{σ1≤t}

βt(σ1, t)� +∞
t

βt(σ1, θ)dθ

�
.

Similarly, the G-intensity of σ1 is given by

λ
1,G
t

= 11{σ1>t}

�
11{σ2>t}

�∞
t

βt(t, θ2)dθ2 + qt(t)�∞
t

�∞
t

βt(θ1, θ2)dθ1dθ2 +
�∞
t

qt(θ)dθ
+ 11{σ2≤t}

βt(t, σ2)� +∞
t

βt(θ, σ2)dθ

�
.

Proof. It suffices to prove the first assertion. The G-compensator of σ2 is given by

Λ2,G
t

=

�
σ2∧t

0

dA
2|1
s

G
2|1
s

, t ≥ 0.

where

G
2|1
t

= P(σ2 > t|F
1
t
) =

11{σ1>t}

G
1
t

�� ∞

t

� ∞

t

βt(s, θ)dsdθ+

� ∞

t

qt(θ)dθ

�
+
11{σ1≤t}

α
1
t
(σ1)

� +∞

t

βt(σ1, θ)dθ
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and A
2|1 is the compensator of the F1-conditional survival process G2|1 of σ2. By Proposi-

tion 3.1,

A
2|1
t

=

�
t

0
α
2|1
θ

(θ)dθ +

�
t

0
ps−dΛ

1
s
+ �M

1
, p�t, t ≥ 0,

where α
2|1 and p are given as in Proposition 5.4, Λ1 is the F1-compensator of σ1 given by

Λ1
t
=

�
σ1∧t

0

α
1
s
(s)

G1
s

ds, t ≥ 0.

and M
1
t
= 11{σ1≤t} − Λ1

t
, t ≥ 0 is F1-martingale. Note that �M1

, p� is the F1-compensator
of the process

11{σ1≤t}∆pσ1 = 11{σ1≤t}

�
qσ1(σ1)

α1
σ1
(σ1)

−

�∞
σ1

qσ1(θ)dθ

G1
σ1

�
, t ≥ 0,

which equals �
σ1∧t

0

α
1
s
(s)Hs

G1
s

ds, t ≥ 0

where (cf. [8, Corollary 4.6])

Ht =
qt(t)

α
1
t
(t)

−

�∞
t

qt(θ)dθ

G
1
t

.

Hence we obtain that

A
2|1
t

=

�
t

0
α
2|1
θ

(θ)dθ +

�
σ1∧t

0

qθ(θ)

G
1
θ

dθ

which implies that the random time σ2 has a G-intensity given as in the proposition.

Remark 5.7. The equality

P(σ1 ∧ σ2 > t|Ft) =

� ∞

t

� ∞

t

βt(θ1, θ2)dθ1dθ2 +

� +∞

t

qt(θ)dθ

shows that F-intensity process of σ1 ∧ σ2 is

λ
min
t

:=

�∞
t

βt(θ, t) + βt(t, θ)dθ + qt(t)�∞
t

�∞
t

βt(θ, θ2)dθ1dθ2 +
�∞
t

qt(θ)dθ
.

Note that the relation

11{σ1∧σ2>t}λ
min = 11{σ1∧σ2>t}(λ

1,G
t

+ λ
2,G
t

)

does not hold in general under the generalized density hypothesis.
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