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8.1 Introduction

8.1.1 A Primer on CDO

Collateralized debt obligations (CDOs) are an innovation in the structured
finance market that allow investors to invest in a diversified portfolio of assets
at different risk attachment points to the portfolio. The basic concept behind
a CDO is the redistribution of risk: some securities backed by a pool of assets
in a CDO will be higher rated than the average rating of the portfolio and
some will be lower rated.

Generally, CDOs take two forms, cash flow or synthetic. For a cash flow
vehicle, investor capital is used directly to purchase the portfolio collateral
and the cash generated by the portfolio is used to pay the investors in the
CDO. Synthetic CDOs are usually transactions that involve an exchange of
cash flow through a credit default swap or a total rate of return swap. The
CDO basically sells credit protection on a reference portfolio and receives all
cash generated on the portfolio. In these types of transaction, the full capital
structure is exchanged and there is no correlation risk for the CDO issuer.

In this study, we are primarily interested in valuing (synthetic) single tranche
CDO. It is very important to note that these products are exposed to corre-
lation risk. In practice the CDO issuer sells protection on a portion of the
capital structure on a reference portfolio of names. In exchange, he receives
a running spread, usually paid quarterly, which value depends on the risk of
the individual issuers in the reference portfolio and on a correlation hypothe-
sis between those names. For liquid reference portfolios (indices) like Trac-X
and iBoxx there exists now a liquid market for these single tranche CDOs
and as a consequence for the correlation.
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We now describe mathematically the payoff of a single tranche CDO on a
reference portfolio of size n and maturity T . Let τi denote the default time
of the ith name in the underlying portfolio and Ni be its notional value. The
total notional is N =

∑n
i=1 Ni. We use ωi to represent the weight of the ith

name in the portfolio i.e. ωi = Ni/N . Let Ri be the recovery rate of name i.
The cumulative loss process is given by Lt =

∑n
i=1 Ni(1−Ri)1{τi≤t} and the

percentage loss process is

lt = Lt/N =
n∑

i=1

ωi(1−Ri)1{τi≤t}.

Usually the capital structure is decomposed in the following way: let us write
the interval (0, 1] as the unions of the non-overlapping interval (αj−1, αj]
where 0 = α0 < α1 < · · · < αk = 1. The points αj−1 and αj are called,
respectively, the attachment and detachment points of the jth tranche. At

time t, the loss of the jth tranche is given as a call spread i.e. l
(j)
t = (lt −

αj−1)
+ − (lt − αj)

+.

The cash flows of a single tranche CDO are as follows: The protection
seller, on one hand, receives at times {t1, · · · , tM = T} the coupon κjc

j
tu

(u = 1, · · · , M) where κj is called the spread of the tranche and cj
tu =

1 − l
(j)
tu /(αj − αj−1) is the outstanding notional of the tranche at time tu.

The protection buyer, on the other hand, receives at each default time t that

occurs before the maturity the amount ∆l
(j)
t l

(j)
t − l

(j)
t− .

From the point of view of pricing, for the jth tranche of the CDO, our objective
is to find the value of the spread κj. From now on, we shall consider a
continuously compounded CDO of maturity T . The value of the default leg
and the premium leg are given respectively by the following formulas:

Default Leg = −(αj − αj−1)

∫ T

0
B(0, t)q(αj−1, αj, dt),

Premium Leg = κj × (αj − αj−1)

∫ T

0
B(0, t)q(αj−1, αj, t)dt

where B(0, t) is the value at time 0 of a zero coupon maturing at time t

assuming deterministic interest rates and q(αj−1, αj, t) := E(cj
t) is the tranche

survival probability at time t computed under a given risk-neutral probability.
Thanks to the integration by part formula, the fair spread κj is then computed
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as

κj =

1−B(0, T )q(αj−1, αj, T ) +

∫ T

0
q(αj−1, αj, t)B(0, dt)∫ T

0
B(0, t)q(αj−1, αj, t)dt

. (8.1)

To obtain the value of the preceding integrals, the key term to compute is
the functions q, which can be expressed as a linear combination of call prices
of the form

C(t, k) = E{(lt − k)+}. (8.2)

8.1.2 Factor Models

The main element in computing CDO value is the distribution of the per-
centage loss l. As mentioned earlier, this distribution depends in a critical
manner on the spread (or market implied default probabilities) of the individ-
ual names and their correlation as quoted for instance in the liquid tranche
market. As a consequence, we need a way to model the correlation between
default times of individual names. In practice and in order to obtain tractable
results, the market adopts a simplified approach - the factor models.

The main characteristic of the factor models, e.g. see Andersen and Sidenius
and Basu (2003), is the conditional independence between the default times
τ1, · · · , τn. In this framework, the market is supposed to contain some latent
factors which impact all concerning firms at the same time. Conditionally on
these factors, denoted by U (and we may assume U is uniformly distributed
on (0, 1) without loss of generality), the default events Ei = {τi ≤ t} are
supposed to be independent. To define the correlation structure using the
factor framework, it is sufficient to define the conditional default probabilities.
In a nutshell, this tantamounts to choose a function F such that 0 ≤ F ≤ 1
and ∫ 1

0
F (p, u)du = p, 0 ≤ p ≤ 1.

If pi = P(Ei), the function F (pi, u) is to be interpreted as P(Ei|U = u).

The standard Gaussian copula case with correlation ρ corresponds to the
function F defined by

F (p, u) = Φ

{
Φ−1(p)−√ρΦ−1(u)√

1− ρ

}
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where Φ(x) is the distribution function of the standard normal distribution
N(0, 1). Other copula functions, which corresponds to different types of
correlation structure, can be used in a similar way. The main drawback of
the Gaussian correlation approach is the fact that one cannot find a unique
model parameter ρ able to price all the observed market tranches on a given
basket. This phenomenon is referred to as correlation skew by the market
practitioners. One way to take into account this phenomenon is to consider
that the correlation ρ is itself dependent on the factor value. See Burtschell,
Gregory and Laurent (2007) for a discussion of this topic.

In the factor framework, the conditional cumulative loss l can be written as a
sum of independent random variables given U . It is then possible to calculate
(8.2) by analytical or numerical methods:

� Firstly, calculate the conditional call value using exact or approximated
numerical algorithms,

� secondly, integrate the result over the factor U .

In the sequel, we will explore new methodologies to compute approximations
of the conditional call value in an accurate and very quick manner.

8.1.3 Numerical Algorithms

The challenge for the practitioners is to compute quickly prices for their
(usually large) books of CDOs in a robust way.

Several methods are proposed to speed up the numerical calculations, such
as the recursive method: Hull and White (2004), Brasch (2004), saddle-
point method: Martin, Thompson and Browne (2001), Antonov, Mechkov
and Misirpashaev (2005) and the Gaussian approximation method: Vasicek
(1991). In this paper, we propose a new numerical method which is based on
the Stein’s method and the zero-bias transformation.

Stein’s method is an efficient tool to estimate the approximation errors in the
limit theorem problems. We shall combine the Stein’s method and the zero
bias transformation to propose first-order approximation formulas in both
Gauss and Poisson cases. The error estimations of the corrected approxi-
mations are obtained. We shall compare our method with other methods
numerically. Thanks to the simple closed-form formulas, we reduce largely
the computational burden for standard single tranche deals.

In financial problems, the binomial-normal approximation has been studied
in different contexts. In particular, Vasicek (1991) has introduced the normal
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approximation to a homogeneous portfolio of loans. In general, this approx-
imation is of order O(1/

√
n). The Poisson approximation, less discussed in

the financial context, is known to be robust for small probabilities in the
approximation of binomial laws. (One usually asserts that the normal ap-
proximation remains robust when np ≥ 10. If np is small, the binomial law
approaches a Poisson law.) In our case, the size of the portfolio is fixed for
a standard synthetic CDO tranche and n ≈ 125. In addition, the default
probabilities are usually small. Hence we may encounter both cases and it is
mandatory to study the convergence speed since n is finite.

The rest of this study is organized as follows: We present in Section 8.2
the theoretical results; Section 8.3 is devoted to numerical tests; finally
Section 8.4 explores real life applications, namely, efficient pricing of single
tranche CDO and application of this new methodology to VaR computation.

8.2 First Order Gauss-Poisson Approximations

8.2.1 Stein’s Method - the Normal Case

Stein’s method is an efficient tool to study the approximation problems. In
his pioneer paper, Stein (1972) first proposed this method to study the normal
approximation in the central limit theorem. The method has been extended
to the Poisson case later by Chen (1975).

Generally speaking, the zero bias transformation is characterized by some
functional relationship implied by the reference distributions, normal or Pois-
son, such that the “distance” between one distribution and the reference dis-
tribution can be measured by the “distance” between the distribution and
its zero biased distribution.

In the framework of Stein’s method, the zero bias transformation in the
normal case is introduced by Goldstein and Reinert (1997), which provides
practical and concise notation for the estimations. In the normal case,
the zero biasing is motivated by the following observation of Stein: a ran-
dom variable Z has the centered normal distribution N(0, σ2) if and only if
E{Zf(Z)} = σ2 E{f ′(Z)} for all regular enough functions f . In a more gen-
eral context, Goldstein and Reinert propose to associate with any random
variable X of mean zero and variance σ2 > 0 its zero bias transformation
random variable X∗ if the following relationship (8.3) holds for any function
f of C1-type,

E{Xf(X)} = σ2 E{f ′(X∗)}. (8.3)
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The distribution of X∗ is unique with density function given by pX∗(x) =
σ−2 E(X1{X>x}).

The centered normal distribution is invariant by the zero bias transformation.
In fact, X∗ and X have the same distribution if and only if X is a centered
Gaussian variable.

We are interested in the error of the normal approximation E{h(X)} −
E{h(Z)} where h is some given function and Z is a centered normal r.v.
with the same variance σ2 of X. By Stein’s equation:

xf(x)− σ2f ′(x) = h(x)− Φσ(h) (8.4)

where Φσ(h) = E{h(Z)}. We have that

E{h(X)} − Φσ(h) = E{Xfh(X)− σ2f ′h(X)} = σ2 E{f ′h(X∗)− f ′h(X)}
≤ σ2‖f ′′h‖sup E(|X∗ −X|)

(8.5)

where fh is the solution of (8.4). Here the property of the function fh and
the difference between X and X∗ are important for the estimations.

The Stein’s equation can be solved explicitly. If h(t) exp(− t2

2σ2 ) is integrable
on R, then one solution of (8.4) is given by

fh(x) =
1

σ2φσ(x)

∫ ∞

x

{h(t)− Φσ(h)}φσ(t)dt (8.6)

where φσ(x) is the density function of N(0, σ2). The function fh is one order
more differentiable than h. Stein has established that ‖f ′′h‖sup ≤ 2‖h′‖sup/σ

2

if h is absolutely continuous.

For the term X −X∗, the estimations are easy when X and X∗ are indepen-
dent by using a symmetrical term Xs = X − X̃ where X̃ is an independent
duplicate of X:

E(|X∗ −X|) =
1

4σ2 E
(
|Xs|3

)
, E(|X∗ −X|k) =

1

2(k + 1)σ2 E
(
|Xs|k+2).

(8.7)

When it concerns dependent random variables, a typical example is the sum
of independent random variables. We present here a construction of zero
biased variable introduced in Goldstein and Reinert (1997) using a random
index to well choose the weight of each summand variable.

Proposition 8.1 Let Xi (i = 1, . . . , n) be independent zero-mean r.v. of
finite variance σ2

i > 0 and X∗
i having the Xi-zero normal biased distribution.
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We assume that (X̄, X̄∗) = (X1, . . . , Xn, X
∗
1 , . . . , X

∗
n) are independent r.v.

Let W = X1 + · · ·+ Xn and denote its variance by σ2
W . Let W (i) = W −Xi

and I be an random index which is independent of (X̄, X̄∗) such that P(I =
i) = σ2

i /σ
2
W . Then W ∗ = W (I) + X∗

I has the W -zero biased distribution.

Although W and W ∗ are dependent, the above construction based on a ran-
dom index choice enables us to obtain the estimation of W −W ∗, which is
of the same order of X −X∗ in the independent case:

E
(
|W ∗ −W |k

)
=

1

2(k + 1)σ2
W

n∑
i=1

E
(
|Xs

i |k+2), k ≥ 1. (8.8)

8.2.2 First-Order Gaussian Approximation

In the classical binomial-normal approximation, as discussed in Vasicek (1991),
the expectation of functions of conditional losses can be calculated using a
Gaussian expectation. More precisely, the expectation E{h(W )} where W is
the sum of conditional independent individual loss variables can be approxi-
mated by ΦσW

(h) where

ΦσW
(h) =

1√
2πσW

∫ ∞

−∞
h(u) exp

(
− u2

2σ2
W

)
du

and σW is the standard deviation of W . The error of this zero-order approxi-
mation is of order O(1/

√
n) by the well-known Berry-Esseen inequality using

the Wasserstein distance, e.g. Petrov (1975), Chen and Shao (2005), except
in the symmetric case.

We shall improve the approximation quality by finding a correction term such
that the corrected error is of order O(1/n) even in the asymmetric case. Some
regularity condition is required on the considered function. Notably, the call
function, not possessing second order derivative, is difficult to analyze. In the
following theorem, we give the explicit form of the corrector term alongside
the order of the approximation.

PROPOSITION 8.1 Let X1, . . . , Xn be independent random variables of
mean zero such that E(X4

i ) (i = 1, . . . , n) exists. Let W = X1 + · · · + Xn

and σ2
W = Var(W ). For any function h such that h′′ is bounded, the normal

approximation ΦσW
(h) of E{h(W )} has the corrector:

Ch =
µ(3)

2σ4
W

ΦσW

{( x2

3σ2
W

− 1
)
xh(x)

}
(8.9)
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where µ(3) =
∑n

i=1 E(X3
i ). The corrected approximation error is bounded by∣∣∣E{h(W )} − ΦσW

(h)− Ch

∣∣∣
≤
∥∥f (3)

h

∥∥
sup

{ 1

12

n∑
i=1

E
(
|Xs

i |4
)

+
1

4σ2
W

∣∣∣ n∑
i=1

E(X3
i )
∣∣∣ n∑

i=1

E
(
|Xs

i |3
)

+
1

σW

√√√√ n∑
i=1

σ6
i

}
.

Proof:
By taking first order Taylor expansion, we obtain

E{h(W )} − ΦσW
(h) = σ2

W E{f ′h(W ∗)− f ′h(W )}
= σ2

W E{f ′′h (W )(W ∗ −W )}+ σ2
W E

[
f

(3)
h

{
ξW + (1− ξ)W ∗}ξ(W ∗ −W )2

]
(8.10)

where ξ is a random variable on [0, 1] independent of all Xi and X∗
i . First,

we notice that the remaining term is bounded by

E
[∣∣f (3)

h

{
ξW + (1− ξ)W ∗}∣∣ξ(W ∗ −W )2

]
≤
∥∥f (3)

h

∥∥
sup

2
E{(W ∗ −W )2}.

Then we have

σ2
W

∣∣∣E [f (3)
h

{
ξW +(1−ξ)W ∗}ξ(W ∗−W )2

]∣∣∣ ≤ ∥∥f (3)
h

∥∥
sup

12

n∑
i=1

E
(
|Xs

i |4
)
. (8.11)

Secondly, we consider the first term in the right-hand side of (8.10). Since
X∗

I is independent of W , we have

E{f ′′h (W )(W ∗ −W )} = E{f ′′h (W )(X∗
I −XI)}

= E(X∗
I ) E{f ′′h (W )} − E{f ′′h (W )XI}. (8.12)

For the second term E{f ′′h (W )XI} of (8.12), since

E{f ′′h (W )XI} = E
{
f ′′h (W ) E(XI |X̄, X̄∗)

}
,

we have using the conditional expectation that

∣∣∣E{f ′′h (W )XI}
∣∣∣ ≤ 1

σ2
W

√
Var{f ′′h (W )}

√√√√ n∑
i=1

σ6
i . (8.13)
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Notice that

Var{f ′′h (W )} = Var{f ′′h (W )− f ′′h (0)} ≤ E[{f ′′h (W )− f ′′h (0)}2] ≤ ‖f (3)
h ‖2

supσ
2
W .

Therefore ∣∣∣E{f ′′h (W )XI}
∣∣∣ ≤ ‖f (3)

h ‖sup

σW

√√√√ n∑
i=1

σ6
i .

For the first term E(X∗
I ) E{f ′′h (W )} of (8.12), we write it as the sum of two

parts

E(X∗
I ) E{f ′′h (W )} = E(X∗

I )ΦσW
(f ′′h ) + E(X∗

I ) E{f ′′h (W )− ΦσW
(f ′′h )}.

The first part is the candidate for the corrector. We apply the zero order
estimation to the second part and get

∣∣∣E(X∗
I )
[
E{f ′′h (W )} − ΦσW

(f ′′h )
]∣∣∣ ≤ ∥∥f (3)

h

∥∥
sup

4σ4
W

∣∣∣ n∑
i=1

E(X3
i )
∣∣∣ n∑

i=1

E
(
|Xs

i |3
)
.

(8.14)
Then, it suffices to write

E{h(W )} − ΦσW
(h)

= σ2
W

[
E(X∗

I )ΦσW
(f ′′h ) + E(X∗

I )
[
E{f ′′h (W )} − ΦσW

(f ′′h )
]
− E{f ′′h (W )XI}

]
+ σ2

W E
[
f

(3)
h

{
ξW + (1− ξ)W ∗}ξ(W ∗ −W )2

]
.

(8.15)

Combining (8.11), (8.13) and (8.14), we let Ch = σ2
W E(X∗

I )ΦσW
(f ′′h ) and we

deduce the error bound. Finally, we use the invariant property of the normal
distribution under zero bias transformation and the Stein’s equation to ob-
tain (8.9). �

The corrector is written as the product of two terms: the first one depends
on the moments of Xi up to the third order and the second one is a nor-
mal expectation of some polynomial function multiplying h. Both terms are
simple to calculate, even in the inhomogeneous case.

To adapt to the definition of the zero biasing random variable, and also to
obtain a simple representation of the corrector, the variables Xi’s are set to be
of expectation zero in Theorem 8.1. This condition requires a normalization
step when applying the theorem to the conditional loss. A useful example
concerns the centered Bernoulli random variables which take two real values
and are of expectation zero.
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Note that the moments of Xi play an important role here. In the symmetric
case, we have µ(3) = 0 and as a consequence Ch = 0 for any function h.
Therefore, Ch can be viewed as an asymmetric corrector in the sense that,
after correction, the approximation realizes the same error order as in the
symmetric case.

To precise the order of the corrector, let us consider the normalization of
an homogeneous case where Xi’s are i.i.d. random variables whose moments
may depend on n. Notice that

ΦσW

{( x2

3σ2
W

− 1
)
xh(x)

}
= σWΦ1

{(x2

3
− 1

)
xh(σWx)

}
.

To ensure that the above expectation term is of constant order, we often
suppose that the variance of W is finite and does not depend on n. In
this case, we have µ(3) ∼ O(1/

√
n) and the corrector Ch is also of order

O(1/
√

n). Consider now the percentage default indicator variable 1{τi≤t}/n,
whose conditional variance given the common factor equals to p(1 − p)/n2

where p is the conditional default probability of ith credit, identical for all
in the homogeneous case. Hence, we shall fix p to be zero order and let
Xi = (1{τi≤t}−p)/

√
n. Then σW is of constant order as stated above. Finally,

for the percentage conditional loss, the corrector is of order O(1/n) because
of the remaining coefficient 1/

√
n.

The Xi’s are not required to have the same distribution: we can handle easily
different recovery rates (as long as they are independent r.v.) by computing
the moments of the product variables (1−Ri)1{τi≤t}. The corrector depends
only on the moments of Ri up to the third order. Note however that the
dispersion of the recovery rates, also of the nominal values can have an impact
on the order of the corrector.

We now concentrate on the call function h(x) = (x − k)+. The Gauss ap-
proximation corrector is given in this case by

Ch =
µ(3)

6σ2
W

kφσW
(k) (8.16)

where φσ(x) is the density function of the distribution N(0, σ2). When the
strike k = 0, the corrector Ch = 0. On the other hand, the function k exp

(
−

k2

2σ2
W

)
reaches its maximum and minimum values when k = σW and k = −σW ,

and then tends to zero quickly.

The numerical computation of this corrector is extremely simple since there
is no need to take expectation. Observe however that the call function is a
Lipschitz function with h′(x) = 1{x>k} and h′′ exists only in the distribution
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sense. Therefore, we can not apply directly Theorem 8.1 and the error esti-
mation deserves a more subtle analysis. The main tool we used to establish
the error estimation for the call function is a concentration inequality in Chen
and Shao (2001). For detailed proof, interested reader may refer to El Karoui
and Jiao (2007).

We shall point out that the regularity of the function h is essential in the
above result. For more regular functions, we can establish correction terms
of corresponding order. However, for the call function, the second order
correction can not bring further improvement to the approximation results
in general.

8.2.3 Stein’s Method - the Poisson Case

The Poisson case is parallel to the Gaussian one. Recall that Chen (1975) has
observed that a non-negative integer-valued random variable Λ of expectation
λ follows the Poisson distribution if and only if E{Λg(Λ)} = λ E{g(Λ + 1)}
for any bounded function g. Similar as in the normal case, let us consider a
random variable Y taking non-negative integer values and E(Y ) = λ < ∞.
A r.v. Y ∗ is said to have the Y -Poisson zero biased distribution if for any
function g such that E{Y g(Y )} exists, we have

E{Y g(Y )} = λ E{g(Y ∗ + 1)}. (8.17)

Stein’s Poisson equation is also introduced in Chen (1975):

yg(y)− λg(y + 1) = h(y)− Pλ(h) (8.18)

where Pλ(h) = E{h(Λ)} with Λ ∼ P (λ). Hence, for any non-negative integer-
valued r.v. V with expectation λV , we obtain the error of the Poisson ap-
proximation

E{h(V )}−Pλ(h) = E
{
V gh(V )−λV gh(V +1)

}
= λV E

{
gh(V

∗+1)−gh(V +1)
}

(8.19)
where gh is the solution of (8.18) and is given by

gh(k) =
(k − 1)!

λk

∞∑
i=k

λi

i!

{
h(i)− Pλ(h)

}
. (8.20)

It is unique except at k = 0. However, the value g(0) does not enter into our
calculations afterwards.
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We consider now the sum of independent random variables. Let Yi (i =
1, · · · , n) be independent non-negative integer-valued r.v. with positive ex-
pectations λi and let Y ∗

i have the Yi-Poisson zero biased distribution. As-
sume that Yi and Y ∗

i are mutually independent. Denote by V = Y1 + · · ·+Yn

and λV = E(V ). Let I be a random index independent of (Ȳ , Ȳ ∗) satisfying
P (I = i) = λi/λV . Then V (I)+Y ∗

I has the V -Poisson zero biased distribution
where V (i) = V − Yi.

For any integer l ≥ 1, assume that Y and Yi have to up (l+1)-order moments.
Then

E(|Y ∗ − Y |l) =
1

λ
E
(
Y |Y s − 1|l

)
, E(|V ∗ − V |l) =

1

λV

n∑
i=1

E
(
Yi|Y s

i − 1|l
)
.

Finally, recall that Chen has established ‖∆gh‖sup ≤ 6‖h‖sup min
(
λ−

1
2 , 1
)

with which we obtain the following zero order estimation

|E{h(V )} − PλV
(h)| ≤ 6‖h‖sup min

( 1√
λV

, 1
) n∑

i=1

E
(
Yi|Y s

i − 1|
)
. (8.21)

There also exist other estimations of error bound (see e.g. Barbour and
Eagleson (1983)). However we here are more interested in the order than the
constant of the error.

8.2.4 First-Order Poisson Approximation

We now present the first-order Poisson approximation following the same idea
as in the normal case. Firstly, recall the zero-order approximation formula.
If V is a random variable taking non-negative integers with expectation λV ,
then we may approximate E{h(V )} by a Poisson function

PλV
(h) =

n∑
m=0

λm
V

m!
e−λV h(m).

The Poisson approximation is efficient under some conditions, for example,
when V ∼ B(n, p) and np < 10. We shall improve the Poisson approximation
by presenting a corrector term as above. We remark that due to the property
that a Poisson distributed random variable takes non-negative integer values,
the variables Yi’s in Theorem 8.2 are discrete integer random variables.

PROPOSITION 8.2 Let Y1, . . . , Yn be independent random variables tak-
ing non-negative integer values such that E(Y 3

i ) (i = 1, . . . , n) exist. Let
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V = Y1 + · · · + Yn with expectation λV = E(V ) and variance σ2
V = Var(V ).

Then, for any bounded function h defined on N+, the Poisson approximation
PλV

(h) of E{h(V )} has the corrector:

CP
h =

σ2
V − λV

2
PλV

(∆2h) (8.22)

where Pλ(h) = E{h(Λ)} with Λ ∼ P(λ) and ∆h(x) = h(x + 1) − h(x). The
corrected approximation error is bounded by∣∣E{h(V )} − PλV

(h)− λVPλV
{∆gh(x + 1)}E(Y ∗

I − YI)
∣∣

≤ 2‖∆gh‖sup

n∑
i=1

λi E
{
|Y ∗

i − Yi|
(
|Y ∗

i − Yi| − 1
)}

+ 6‖∆gh‖sup

{ n∑
i=1

E(Yi|Y s
i − 1|)

}2

+ Var{∆gh(V + 1)}1
2

{ n∑
i=1

λ2
i Var(Y ∗

i − Yi)
}1

2

.

Proof:
Let us first recall the discrete Taylor formula. For any integers x and any
positive integer k ≥ 1,

g(x + k) = g(x) + k∆g(x) +
k−1∑
j=0

(k − 1− j)∆2g(x + j).

Similar as in the Gaussian case, we apply the above formula to right-hand
side of E{h(V )}−PλV

(h) = λV E{gh(V
∗+1)− gh(V +1)} and we shall make

decompositions. Since V ∗ − V is not necessarily positive, we take expansion
around V (i) for the following three terms respectively and obtain

E
{
gh(V

∗ + 1)− gh(V + 1)−∆gh(V + 1)(V ∗ − V )
}

=
n∑

i=1

λi

λV
·

[
E
{
gh(V

(i) + 1) + Y ∗
i ∆gh(V

(i) + 1) +

Y ∗
i −1∑
j=0

(Y ∗
i − 1− j)∆2gh(V

(i) + 1 + j)
}

− E
{
gh(V

(i) + 1) + Yi∆gh(V
(i) + 1) +

Yi−1∑
j=0

(Yi − 1− j)∆2gh(V
(i) + 1 + j)

}
− E

{
∆gh(V

(i) + 1)(Y ∗
i − Yi) +

Yi−1∑
j=0

(Y ∗
i − Yi)∆

2gh(V
(i) + 1 + j)

}]
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which implies that the remaining term is bounded by∣∣∣E{gh(V
∗ + 1)− gh(V + 1)−∆gh(V + 1)(V ∗ − V )

}∣∣∣
≤ ‖∆2gh‖sup

n∑
i=1

λi

λV

[
E
{(Y ∗

i

2

)
+

(
Yi

2

)}
+ E

{
|Yi(Y

∗
i − Yi)|

}]
.

We then make decomposition

E
{
∆gh(V + 1)(V ∗ − V )

}
= PλV

{∆gh(x + 1)}E(Y ∗
I − YI) + Cov

{
Y ∗

I − YI , ∆gh(V + 1)
}

+
[
E{∆gh(V + 1)} − PλV

{∆gh(x + 1)}
]
E(Y ∗

I − YI).

(8.23)

Similar as in the Gaussian case, the first term of (8.23) is the candidate of
the corrector. For the second term, we use again the technique of conditional
expectation and obtain

Cov
{
∆gh(V + 1), Y ∗

I − YI

}
≤ 1

λV
Var

{
∆gh(V + 1)

}1
2

{ n∑
i=1

λ2
i Var(Y ∗

i − Yi)
}1

2

.

For the last term of (8.23), we have by the zero order estimation

[
E{∆gh(V + 1)} − PλV

{∆gh(x + 1)}
]
E(Y ∗

I − YI) ≤ 6‖∆gh‖sup

λV
×{ n∑

i=1

E(Yi|Y s
i − 1|)

}2
.

It remains to observe that PλV
{∆gh(x+1)} = 1

2PλV
(∆2h) and let the corrector

to be

CP
h =

λV

2
PλV

(∆2h) E(Y ∗
I − YI).

Combining all these terms, we obtain∣∣E{h(V )} − PλV
(h)− CP

h

∣∣
≤ ‖∆2gh‖sup

n∑
i=1

λi E
{
|Y ∗

i − Yi|
(
|Y ∗

i − Yi| − 1
)}

+ Var
{
∆gh(V + 1)

} 1
2

{ n∑
i=1

λ2
i Var(Y ∗

i − Yi)
}1

2

+ 6‖∆gh‖sup

{ n∑
i=1

E(Yi|Y s
i − 1|)

}2
.

(8.24)
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�

The Poisson corrector CP
h is of similar form with the Gaussian one and con-

tains two terms as well: one term depends on the moments of Yi and the
other is a Poisson expectation.

Since Yi’s are N+-valued random variables, they can represent directly the
default indicators 1{τi≤t}. This fact limits however the recovery rate to be
identical or proportional for all credits. We now consider the order of the
corrector. Suppose that λV does not depend on n to ensure that PλV

(∆2h)
is of constant order. Then in the homogeneous case, the conditional default
probability p ∼ O(1/n). For the percentage conditional losses, as in the
Gaussian case, the corrector is of order O(1/n) with the coefficient 1/n.

Since ∆2h(x) = 1{x=k−1} for the call function, its Poisson approximation
corrector is given by

CP
h =

σ2
V − λV

2(�k� − 1)!
e−λV λ

�k�−1
V (8.25)

where �k� is the integer part of k. The corrector vanishes when the expecta-
tion and the variance of the sum variable V are equal. The difficulty here is
that the call function is not bounded. However, we can prove that Theorem
8.2 holds for any function of polynomial increasing speed El Karoui and Jiao
(2007).

8.3 Numerical Tests

Before exploring real life applications, we would like in this section to perform
some basic testing of the preceding formulae. In the sequel, we consider
the call value E{(l − k)+} where l = n−1∑n

i=1(1 − Ri)ξi and the ξi’s are
independent Bernoulli random variables with success probability equal to pi.

8.3.1 Validity Domain of the Approximations

We begin by testing the accuracy of the corrected Gauss and Poisson approx-
imations for different values of np =

∑n
i=1 pi in the case Ri = 0, n = 100

and for different values of k such that 0 ≤ k ≤ 1. The benchmark value is
obtained through the recursive methodology well known by the practitioners
which computes the loss distribution by reducing the portfolio size by one
name at each recursive step.
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Figure 8.1. Gauss and Poisson approximation errors for vari-
ous values of np as a function of the strike over the expected
loss, with line curve for Gaussian errors and dotted curve for
Poisson errors. XFGgperror

In Figure 8.1 are plotted the differences between the corrected Gauss approx-
imation and the benchmark (Error Gauss) and the corrected Poisson approx-
imation and the benchmark (Error Poisson) for different values of np as a
function of the call strike over the expected loss. Note that when the tranche
strike equals the expected loss, the normalized strike value in the Gaussian
case equals zero due to the centered random variables, which means that
the correction vanishes. We observe in Figure 8.1 that the Gaussian error is
maximal around this point.

We observe on these graphs that the Poisson approximation outperforms the
Gaussian one for approximately np < 15. On the contrary, for large values of
np, the Gaussian approximation is the best one. Because of the correction,
the threshold between the Gauss-Poisson approximation is higher than the
classical one np ≈ 10. In addition, the threshold may be chosen rather
flexibly around 15. Combining the two approximations, the minimal error of
the two approximations is relatively larger in the overlapping area when np
is around 15. However, we obtain satisfactory results even in this case. In all
the graphs presented, the error of the mixed approximation is inferior than
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1 bp.

Our tests are made with inhomogeneous pi’s obtained as

pi = p exp(σWi − 0.5σ2)

(log-normal random variable with expectation p and volatility σ) where Wi

is a family of independent standard normal random variables and values of
σ ranging from 0% to 100%. Qualitatively, the results were not affected by
the heterogeneity of the pi’s.

Observe that there is oscillation in the Gaussian approximation error, while
the Poisson error is relatively smooth. This phenomenon is related to the
discretization impact of discrete laws.

As far as a unitary computation is concerned (one call price), the Gaussian
and Poisson approximation perform much better than the recursive method-
ology: we estimate that these methodologies are 200 times faster. To be fair
with the recursive methodology one has to recall that by using it we obtain
not only a given call price but the whole loss distribution which correspond
to about 100 call prices. In that case, our approximations still outperform
the recursive methodology by a factor 2.

8.3.2 Stochastic Recovery Rate - Gaussian Case

We then consider the case of stochastic recovery rate and check the validity of
the Gauss approximation in this case. Following the standard in the industry
(Moody’s assumption), we will model the Ri’s as independent beta random
variables with expectation 50% and standard deviation 26%.

An application of Theorem 8.1 is used so that the first order corrector term
takes into account the first three moments of the random variables Ri. To
describe the obtained result let us first introduce some notations. Let µRi

, σ2
Ri

and γ3
Ri

be the first three centered moments of the random variable Ri, namely

µRi
= E(Ri), σ2

Ri
= E{(Ri − µRi

)2}, γ3
Ri

= E{(Ri − µRi
)3}.

We also define Xi = n−1(1 − Ri)ξi − µi where µi = n−1(1 − µRi
)pi and

pi = E(ξi). Let W be
∑n

i=1 Xi. We have

σ2
W = Var(W ) =

n∑
i=1

σ2
Xi

where σ2
Xi

=
pi

n2

{
σ2

Ri
+ (1− pi)(1− µRi

)2
}

.
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Figure 8.2. Gaussian approximation errors in the stochastic
recovery case for various values of np as a function of the strike
over the expected loss, compared with upper and lower 95%
confidence interval bounds of Monte Carlo 1,000,000 simula-
tions. XFGstoerror

Finally, if k̃ = k −
∑n

i=1 µi, we have the following approximation

E{(l − k)+} ≈ ΦσW
( · − k)+ +

1

6

1

σ2
W

n∑
i=1

E
(
X3

i )k̃φσW
(k̃)

where

E(X3
i ) =

pi

n3

{
(1− µRi

)3(1− pi)(1− 2pi) + 3(1− pi)(1− µRi
)σ2

Ri
− γ3

Ri

}
.

The benchmark is obtained using standard Monte Carlo integration with
1,000,000 simulations. We display, in Figure 8.2, the difference between the
approximated call price and the benchmark as a function of the strike over
the expected loss. We also consider the lower and upper 95% confidence
interval for the Monte Carlo results. As in the standard case, one observes
that the greater the value of np the better the approximation. Furthermore,
the stochastic recovery brings a smoothing effect since the conditional loss
no longer follows a binomial law.
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The Poisson approximation, due to constraint of integer valued random vari-
ables, can not treat directly the stochastic recovery rates. We can however
take the mean value of Ri’s as the uniform recovery rate especially for low
value of np without improving the results except for very low strike (equal to
a few bp).

8.3.3 Sensitivity Analysis

We are finally interested in calculating the sensitivity with respect to pj. As
for the Greek of the classical option theory, direct approximations using the
finite difference method implies large errors. We hence propose the following
procedure.

Let ljt = 1−R
n 1{τj≤t}. Then for all j = 1, · · · , n,

(lt − k)+ = 1{τj≤t}

(∑
i�=j

lit +
1−R

n
− k

)
+

+ 1{τj>t}

(∑
i�=j

lit − k
)

+
.

As a consequence, we may write

E{(lt − k)+|U} = F (pj, U) E
{(∑

i�=j

lit +
1−R

n
− k

)
+

∣∣∣U}
+
{
1− F (pj, U)

}
E
{(∑

i�=j

lit − k
)

+

∣∣∣U}.

Since the only term which depends on pj is the function F (pj, U), we obtain
that ∂pj

C(t, k) can be calculated as∫ 1

0
du∂1F (pj, u) E

[{∑
i�=j

lit +ωj(1−Rj)−k
}

+
−
(∑

i�=j

lit−k
)

+

∣∣∣U = u
]

(8.26)

where we compute the call spread using the mixed approximation for the
partial total loss.

We test this approach in the case where Ri = 0 on a portfolio of 100 names
such that one fifth of the names has a default probability of 25 bp, 50 bp,
75 bp, 100 bp and 200 bp respectively for an average default probability of
90 bp. We compute call prices derivatives with respect to each individual
name probability according to the formula (8.26) and we benchmark this
result by the sensitivities given by the recursive methodology.

In Figure 8.3, we plot these derivatives for a strike value of 3% computed
using the recursive and the approximated methodology. Our finding is that
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Figure 8.3. Sensitivity with respect to individual default prob-
ability by the approximated and the recursive methodology,
for 5 types of 100 total names. XFGsensibility

in all tested cases (strike ranging from 3% to 20%), the relative errors on these
derivatives are less than 1% except for strike higher than 15%, in which case
the relative error is around 2%. Note however that in this case, the absolute
error is less than 0.1 bp for derivatives whose values are ranging from 2 bp to
20 bp. We may remark that the approximated methodology always overvalues
the derivatives value. However in the case of a true mezzanine tranche this
effect will be offset. We consider these results as very satisfying.

8.4 Real Life Applications

After recalling the main mathematical results, we use them on two real life
applications: valuation of single tranche CDOs and computing VaR figures
in a timely manner.

8.4.1 Gaussian Approximation

Let µi and σi be respectively the expectation and standard deviation of the
random variable χi = n−1(1−R)1{τi≤t}. Let Xi = χi−µi and W =

∑n
i=1 Xi,
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so that the expectation and standard deviation of the random variable W
are 0 and σW =

√∑n
i=1 σ2

i respectively. Let also pi be the default probability
of issuer i. We want to calculate

C(t, k) = E{(lt − k)+} = E{(W − k̃)+}

where k̃ = k −
∑n

i=1 µi.

Assuming that the random variables Xi’s are mutually independent, the re-
sult of Theorem 8.1 may be stated in the following way

C(t, k) ≈
∫ +∞

−∞
dxφσW

(x)(x− k̃)+ +
1

6

1

σ2
W

n∑
i=1

E(X3
i )k̃φσW

(k̃) (8.27)

where E(X3
i ) = (1−R)3

n3 pi(1 − pi)(1 − 2pi). The first term on the right-hand
side of (8.27) is the Gaussian approximation that can be computed in closed
form thanks to Bachelier formula whereas the second term is a correction
term that accounts for the non-normality of the loss distribution.

In the sequel, we will compute the value of the call option on a loss dis-
tribution by making use of the approximation (8.27). In the conditionally
independent case, one can indeed write

E(lt − k)+ =

∫
PU(du) E{(lt − k)+|U = u}

where U is the latent variable describing the general state of the economy.
As the default time are conditionally independent upon the variable U , the
integrand may be computed in closed form using (8.27).

We note finally that in the real life test, we model U in a non-parametric
manner such that the base correlation skew of the market can be reproduced.

8.4.2 Poisson Approximation

Recall that Pλ is the Poisson measure of intensity λ. Let λi = pi and λV =∑n
i=1 λi where now V =

∑n
i=1 Yi with Yi = 1{τi≤t}. We want to calculate

C(t, k) = E{(lt − k)+} = E{(n−1(1−R)V − k)+}.

Recall that the operator ∆ is such that (∆f)(x) = f(x + 1)− f(x). We also
let the function h be defined by h(x) = {n−1(1−R)x− k}+ .
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Assuming that the random variables Yi’s are mutually independent, we may
write according to the results of theorem 8.2 that

C(t, k) ≈ PλV
(h)− 1

2

( n∑
i=1

λ2
i

)
PλV

(∆2h) (8.28)

where

PλV
(∆2h) = n−1(1−R)e−λV

λ
�m�−1
V

(�m� − 1)!

where m = nk/(1 − R). The formula (8.28) may be used to compute the
unconditional call price in the same way as in the preceding subsection.

8.4.3 CDO Valuation

In this subsection, we finally use both Gaussian and Poisson first order ap-
proximations to compute homogeneous single tranche CDO value and break
even as described in formula (8.1). As this formula involves conditioning on
the latent variable U , we are either in the validity domain of the Poisson ap-
proximation or in the validity domain of the Gaussian approximation. Taking
into account the empirical facts underlined in Section 8.3, we choose to apply
the Gaussian approximation for the call value as soon as

∑
i F (pi, u) > 15

and the Poisson approximation otherwise. All the subsequent results are
benchmarked using the recursive methodology.

Our results for the quoted tranches are gathered in the following table. Level
represents the premium leg for the spread of 1 bp and break even is the spread
of CDO in (8.1).

In the following table are gathered the errors on the break even expressed in
bp. We should note that in all cases, the error is less than 1.15 bp which is
below the market uncertainty that prevails on the bespoke CDO business. We
observe furthermore that the error is maximal for the tranche 3%-6% which
correspond to our empirical finding (see Figure 8.1) that the approximation
error is maximal around the expected loss of the portfolio (equal here to
4.3%).

Trying to understand better these results, we display now in the following
two tables the same results but for equity tranches.
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Attach Detach Output REC Approx.
0% 3% Default Leg 2.1744% 2.1752%

Level 323.2118% 323.2634%
Break Even 22.4251% 22.4295%

3% 6% Default Leg 0.6069% 0.6084%
Level 443.7654% 443.7495%

Break Even 4.5586% 4.5702%
6% 9% Default Leg 0.1405% 0.1404%

Level 459.3171% 459.3270%
Break Even 1.0197% 1.0189%

9% 12% Default Leg 0.0659% 0.0660%
Level 462.1545% 462.1613%

Break Even 0.4754% 0.4758%
12% 15% Default Leg 0.0405% 0.0403%

Level 463.3631% 463.3706%
Break Even 0.2910% 0.2902%

15% 22% Default Leg 0.0503% 0.0504%
Level 464.1557% 464.1606%

Break Even 0.1549% 0.1552%
0% 100% Default Leg 3.1388% 3.1410%

Level 456.3206% 456.3293%
Break Even 1.1464% 1.1472%

Table 8.1. Break even values for the quoted tranches, by
recursive method and our approximation method respectively

Error
0-3 0.44
3-6 1.15
6-9 - 0.08

9-12 0.04
12-15 - 0.08
15-22 0.02
0-100 0.08

Table 8.2. Break even errors for the quoted tranches compared
to the recursive method, expressed in bp
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Attach Detach Output REC Mixte
0% 3% DL 2.1744% 2.1752%

Level 323.2118% 323.2634%
BE 22.4251% 22.4295%

0% 6% DL 2.7813% 2.7836%
Level 383.4886% 383.5114%

BE 12.0878% 12.0969%
0% 9% DL 2.9218% 2.9240%

Level 408.7648% 408.7853%
BE 7.9422% 7.9476%

0% 12% DL 2.9877% 2.9900%
Level 422.1122% 422.1302%

BE 5.8984% 5.9025%
0% 15% DL 3.0282% 3.0303%

Level 430.3624% 430.3788%
BE 4.6909% 4.6940%

0% 22% DL 3.0785% 3.0807%
Level 441.1148% 441.1280%

BE 3.1723% 3.1744%
0% 100% DL 3.1388% 3.1410%

Level 456.3206% 456.3293%
BE 1.1464% 1.1472%

Table 8.3. Break even values for the equity tranches, by re-
cursive method and our approximation method respectively

Error
0-3 0.44
0-6 0.92
0-9 0.55

0-12 0.41
0-15 0.31
0-22 0.21

0-100 0.08

Table 8.4. Break even errors for the equity tranches compared
to the recursive method, expressed in bp

8.4.4 Robustness of VaR Computation

In this section, we consider the VaR computation for a given CDOs book and
show that the use of the Gaussian first order approximation as in subsection
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8.4.1 can speed up substantially credit derivatives VaR computation without
loss of numerical accuracy. We restrict our attention on the Gaussian ap-
proximation as we want to be able to consider non-homogeneous reference
portfolio. We study the approximation effect on VaR computation by using
a stylized portfolio which strikes and maturities are distributed such that the
resulting book is reasonably liquid and diversified.

Our finding is that we may safely use this approximation without a significant
loss of accuracy for our stylized portfolio and this could lead, according to
our estimation, to a reduction of 90% of VaR computation time as compared
with the recursive methodology. The production of the VaR in due time for
financial institution will then still be possible even if its business on single
tranche increases steadily.

To test the robustness of the proposed approximation in VaR computation,
we decide to study the accuracy (as compared by a full recursive valuation)
of differences of the form

∆ω(T,K) = Eω{(lT −K)+} − Eω0{(lT −K)+}

for various (spreads and correlation) VaR scenarios ω randomly generated.
Here ω0 denotes the initial scenario.

Generating VaR Scenarios

We aim here at generating by a Monte Carlo procedure a family of scenarios
for spreads and the base correlation that we will assume constant in this set
of tests.

We choose the following dynamic for the daily variation of the spreads of the
common reference portfolio

∆si

si
= 50%

(√
30%ε +

√
70%εi

)√
∆t

where ε, ε1, . . . , εM are independent standard Gaussian random variables and
∆t1/252. In other words, we assume a joint log-normal dynamic with volatil-
ity 50% and correlation 30%.

We then assume that the shocks on the base correlation are normally dis-
tributed with initial value 30% and annual volatility of 15%.

In the sequel and for our testing, we will use a sample of 1000 such scenarios
of spreads and correlation daily moves.
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Stylized Portfolio Description

We start from the stylized distribution of a single tranche CDO portfolio.
The resulting position is chosen so that is is reasonably liquid and diversified
in term of maturity, strike and credit risk.

Each strike (expressed in expected loss unit) and maturity will be assigned
a positive and a negative weight according to the corresponding notional in
position. Hence, we come up with two positive normalized (=unity total
mass) measures µ+ and µ− that reflects the book repartition in terms of
strike (expressed in expected loss) and maturity. We also let µ = µ+ − µ−
and µ̃ = |µ|/2 = (µ+ + µ−)/2.

We give below an example to explain more precisely. Let us consider, for
instance, a protection buyer CDO position with maturity T , with expected
loss E(lT ), with notional N and strikes A and B expressed in percentage.
We also define a(T ) = A/ E(lT ) and b(T ) = B/ E(lT ). Using the following
approximate formulas for the payout of the default and premium legs

Default Leg = N ×
[
{lT − a(T ) E(lT )}+ − {lT − b(T ) E(lT )}+

]
,

Premium Leg = N × Spread× T

2
×[

(B − A)− {lT/2 − a(T/2) E(lT/2)}+ + {lT/2 − b(T/2) E(lT/2)}+
]
,

we observe that this deal will contribute for a positive amount of N on the
point {a(T ), T}, a negative amount of −N on the point {b(T ), T}, a positive
amount of N × Spread × T/2 on the point {a(T/2), T/2} and a negative
amount of −N × Spread× T/2 on the point {b(T/2), T/2}.

Error Computation

Let ∆ω
GA(T, K) and ∆ω

REC(T, K) be the value of the difference

Eω{(lT −K)+} − Eω0{(lT −K)+}
as given respectively by the Gaussian approximation and a full recursive
valuation.

We are interested in different types of errors that will allow us to assess the
robustness of the proposed approximation for VaR computation purposes.
The algebraic average error (see Figure 8.4) arising from the use of the ap-
proximation on the book level and expressed in spread term may be defined
as

Algebraic Average Error(ω)

∫
µ(dk, dT )

T

{
∆ω

GA(T, kET )−∆ω
REC(T, kET )

}
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Figure 8.4. Algebraic Average Error of VaR per Scenario,
expressed in bp. XFGalgerror

where ET = E(lT ). The maximum algebraic average error on the book in
spread term is defined as

Max Algebraic Error = max
ω
|Algebraic Average Error(ω)| .

Note that this way of computing the error allows the offset of individual er-
rors due to the book structure. It is reasonable to take these effects into
account when one tries to degrade numerical computation for VaR compu-
tation purposes. However, we will also compute the more stringent absolute
average error (see Figure 8.5) on the book in spread term which is defined as

Absolute Average Error(ω)

∫
µ̃(dk, dT )

T

∣∣∆ω
GA(T, kET )−∆ω

REC(T, kET )
∣∣.

The maximum absolute average error on the book in spread term is then
defined as

Max Absolute Error = max
ω

Absolute Average Error(ω).

Our main results are
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Figure 8.5. Absolute Average Error of VaR per Scenario, ex-
pressed in bp. XFGabsolute

Max Algebraic Error = 0.1785 bp,

Max Absolute Error = 0.3318 bp.

As expected the maximum algebraic error is half the maximum absolute error
as we allow the offsetting of the error due to the book structure.

These results are quite satisfying and justify the use of this approach for VaR
computations in an industrial setting.
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